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EXECUTIVE SUMMARY 

The National Center for Atmospheric Research (NCAR) led a partnership to advance the state-of-
the-science of solar power forecasting by designing, developing, building, deploying, testing, and 
assessing the Sun4Cast® Solar Power Forecasting System. The project included cutting-edge 
research, testing in several geographically and climatologically diverse high penetration solar 
utilities and ISOs, and wide dissemination of the research results to raise the bar on solar power 
forecasting technology. The partners included three other national laboratories, six universities, 
and industry partners. This public-private-academic team worked in concert to advance solar 
power forecasting by performing use-inspired and cutting-edge research to advance both the 
necessary forecasting technologies and the metrics for evaluating them. The project has culminated 
in a year-long, full-scale demonstration of providing irradiance and power forecasts to utilities and 
ISOs to use in their operations. 

The project focused on identifying elements of a value chain, beginning with the weather that 
causes a deviation from clear sky irradiance and progressing through monitoring of observations, 
modeling, forecasting, dissemination and communication of the forecasts, interpretation of the 
forecasts, and through decision-making, which produces outcomes that have an economic value. 
The system was evaluated using metrics developed specifically for this project, which provided 
rich information on model and system performance. 

Research was conducted on the very short range (0-6 hours) Nowcasting system as well as on the 
longer term (6-72 hour) forecasting system, which were then blended, converted to power, analog 
ensemble applied to for the Sun4Cast® Solar Power Forecasting System. The shortest range 
forecasts are based on observations in the field. TSICast operates on the shortest time scale, with 
a latency of only a few minutes and forecasts that currently extend to approximately15 min. This 
project facilitated research in improving hardware and software so that the new high definition 
cameras deployed at multiple nearby locations allow discernment of the clouds at varying levels 
and advection according to the winds observed at those levels. Improvements over “smart 
persistence” are about 29% for even these very short forecasts. StatCast uses pyranometer data 
measured at the site as well as concurrent meteorological observations and forecasts. StatCast is 
based on regime-dependent artificial intelligence forecasting techniques and has been shown to 
improve on “smart persistence” forecasts by 15-50%. A second category of short-range forecasting 
systems employs satellite imagery and uses that information to discern clouds and their motion, 
allowing these systems to project the clouds, and the resulting blockage of irradiance in time. 
CIRACast was already one of the more advanced cloud motion systems, which is the reason that 
team was brought to this project. During the project timeframe, the CIRA team advanced cloud 
shadowing, parallax removal, and implementation of better advecting winds at different altitudes. 
CiraCast shows generally a 25-40% improvement over Smart Persistence between sunrise and 
approximately 1600 UTC. A second satellite-based system, MADCast, assimilates data from 
multiple satellite imagers and profilers to assimilate a three-dimensional picture of the cloud into 
the dynamic core of WRF. This allows advection of the clouds via the WRF dynamics directly. 
During 2015, MADCast provided at least 70% improvement over Smart Persistence, with most of 
that skill being derived during partly cloudy conditions. After WRF-Solar™ showed initial 
success, it was also deployed in nowcasting mode with coarser runs extending to 6 hours made 
hourly. It provided improvements on the order of 50-60% over Smart Persistence for forecasts 
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extending to 1600 UTC. The advantages of WRF-Solar-Nowcasting and MADCast were then 
blended to develop the new MAD-WRF model that incorporates the most important features of 
each of those models, both assimilating satellite cloud fields and using WRF-Solar™ physics to 
develop and dissipate clouds. MAE improvements for MAD-WRF forecasts from 3-6 hours are 
improved over WRF-Solar-Now by 20%. While all the Nowcasting system components provide 
improvement over Smart Persistence individually, the largest benefit is derived when they are 
smartly blended together by the Nowcasting Integrator to produce an integrated forecast. 

The development of WRF-Solar™ under this project has provided the first numerical weather 
prediction (NWP) model specifically designed to meet the needs of irradiance forecasting. The 
first augmentation improved the solar tracking algorithm to account for deviations associated with 
the eccentricity of the Earth’s orbit and the obliquity of the Earth. Second, WRF-Solar™ added 
the direct normal irradiance (DNI) and diffuse (DIF) components from the radiation 
parameterization to the model output. Third, efficient parameterizations were implemented to 
either interpolate the irradiance in between calls to the expensive radiative transfer 
parameterization, or to use a fast radiative transfer code that avoids computing three-dimensional 
heating rates but provides the surface irradiance. Fourth, a new parameterization was developed to 
improve the representation of absorption and scattering of radiation by aerosols (aerosol direct 
effect). A fifth advance is that the aerosols now interact with the cloud microphysics, altering the 
cloud evolution and radiative properties, an effect that has been traditionally only implemented in 
atmospheric computationally costly chemistry models. A sixth development accounts for the 
feedbacks that sub-grid scale clouds produce in shortwave irradiance as implemented in a shallow 
cumulus parameterization Finally, WRF-Solar™ also allows assimilation of infrared irradiances 
from satellites to determine the three dimensional cloud field, allowing for an improved 
initialization of the cloud field that increases the performance of short-range forecasts. We found 
that WRF-Solar™ can improve clear sky irradiance prediction by 15-80% over a standard version 
of WRF, depending on location and cloud conditions. In a formal comparison to the NAM baseline, 
WRF-Solar™ showed improvements in the Day-Ahead forecast of 22-42%. 

The Sun4Cast®  system requires substantial software engineering to blend all of the new model 
components as well as existing publicly available NWP model runs. To do this we use an expert 
system for the Nowcasting blender and the Dynamic Integrated foreCast (DICast®) system for the 
NWP models. These two systems are then blended, using an empirical power conversion method 
to convert the irradiance predictions to power, and then applying an analog ensemble (AnEn) 
approach to further tune the forecast as well as to estimate its uncertainty. The AnEn module 
decreased Root Mean Square Error (RMSE) by 17% over the blended Sun4Cast®  power forecasts 
and provided skill in the probabilistic forecast with a Brier Skill Score of 0.55. In addition, we 
developed a Gridded Atmospheric Forecast System (GRAFS) in parallel, leveraging cost share 
funds. 

An economic evaluation based on Production Cost Modeling in the Public Service Company of 
Colorado showed that the observed 50% improvement in forecast accuracy will save their 
customers $819,200 with the projected MW deployment for 2024. Using econometrics, NCAR 
has scaled this savings to a national level and shown that an annual expected savings for this 50% 
forecast error reduction ranges from $11M in 2015 to $43M expected in 2040 with increased solar 
deployment. This amounts to $455M in potential discounted savings over the 26-year period of 
analysis. 
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1 INTRODUCTION 
1.1 CONTEXT 

In 2013, the National Center for Atmospheric Research (NCAR) was awarded a collaborative 
agreement with the Department of Energy (DOE) SunShot Initiative to advance the state-of-the-
science of solar power forecasting using a public-private-academic partnership. The project 
included cutting edge research, testing in several geographically and climatologically diverse high 
penetration solar utilities and ISOs, and wide dissemination of the research results to raise the bar 
on solar power forecasting technology. The partners included three other national laboratories 
(Brookhaven National Laboratory [BNL], the National Renewable Energy Laboratory [NREL], 
and the National Oceanographic and Atmospheric Administration [NOAA] – each funded 
separately); six universities (Penn State University [PSU], Colorado State University [CSU], 
University of Washington [UW], University of Hawaii [UH], University of Buffalo [UB] – funded 
by New York Independent System Operators [NYISO], and Stony Brook University [SBU] – 
subcontractor to BNL); industry partners, including a private contractor (Solar Consulting Services 
[SCS]); four forecast providers (Atmospheric and Environmental Research [AER], Global 
Weather Corporation [GWC], MDA Information Systems [MDA], and Schneider Electric/Telvent 
DTN); six utilities (Xcel Energy Services, Sacramento Municipal Utility District [SMUD], Long 
Island Power Authority [LIPA], New York Power Authority [NYPA], Hawaiian Electric Company 
[HECO], and Southern California Edison [SCE]); and four balancing authorities (NYISO, 
California ISO [CAISO], HECO, and Public Service Company of Colorado [PSCo]). We have 
formally included several affiliate partners, such as the U.S. Army Research Laboratory (ARL), 
Commonwealth Scientific and Industrial Research Organization (CSIRO) of Australia, and 
University of Jaén, Spain (Jose Ruiz-Arias). Various other organizations participated less formally 
or beta tested the software that was developed. This public-private-academic team advanced solar 
power forecasting through innovative research, which improved and developed both the necessary 
forecasting technologies and the metrics for evaluating them. The team conducted a year-long, 
full-scale demonstration of integrating enhanced technologies into utility operations and 
evaluating its usefulness.  

The goals of this project were to: 
• Build a solar power forecasting system to advance the state-of-the-science through cutting-

edge research; 
• Test the system with appropriate metrics in several geographically diverse, high-penetration 

solar utilities and independent system operators (ISOs); and  
• Disseminate the research results widely to raise the bar on solar power forecasting 

technology. 

The purpose of this report is to document the accomplishment of these goals. 

Advanced technologies were incorporated into a prototype solar forecasting system that was tested 
in collaboration with solar plant developers, utilities, and ISOs in geographically diverse areas, 
including Long Island, Colorado, and coastal California. Each component of the system was 
verified and validated using cutting-edge evaluation techniques and metrics developed specifically 
for the project through in-depth interactions with stakeholders. The economic value of providing 
the forecasts was assessed. The system will be deployed within operational environments of plant 
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operators, utilities, and ISO partners, with engagement of commercial forecast providers who will 
tailor the methods to the needs of the deployment. The results are being widely disseminated. 

The prototype system, which provides solar forecasts across a wide range of temporal and spatial 
scales, integrates or includes: 

• Solar radiation and cloud measurements  
• Satellite observations 
• Observations from whole sky cameras 
• Local meteorological observations  
• Publicly available numerical weather prediction modeling results, including the HRRR 

model 
• Customized version of WRF-Solar™, tuned for cloud prediction and assimilating 

specialized data 
• Fast radiative transfer model 
• Statistical blending of forecast technologies, tuned to each of a variety of prediction times 

ranging from less than 15 min to at least 48 h, and even extend to 168 hours 
• Irradiance-to-power conversion models 
• Uncertainty quantification for probabilistic forecasts 
• Assessment metrics 

 Table 1-1 details the objectives, resources, and activities of each portion of the project and relates 
them to the project outcomes and impacts. The research and operational application of this effort 
made seminal advances in the state of cloud forecasting, and thus, solar irradiance forecasting, as 
well as integrating it into the grid and assessing the resulting value. Thus, the work outlined herein 
has improved the ability to integrate solar energy and advance higher penetration of renewable 
energy. 

The system was tested in collaboration with geographically diverse solar plant developers, utilities, 
and ISOs, with the engagement of commercial forecast providers that will tailor the techniques 
and methods to the needs of the deployment. Demonstrations included both photovoltaics (PV) 
and Concentrated Solar Power (CSP) systems.  

Finally, a hallmark of this project was wide dissemination of all research and development results 
through presentations at meetings, convening special sessions at targeted conferences, peer-
reviewed publications, technical reports, and workshops for end-users and commercial providers.  
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Table 1-1. A logic model of this project demonstrating activity relevance. 

Objectives Resources Activities Outcomes Impacts 
Quantify value 
of solar 
forecasting 

- Statistics 
- Economics 
- Solar variability info 
- Grid integration info 

Research 
- Develop metrics 
- Develop baselines 
- Develop target values 
- Economic assessment 

Demonstrate 
benefits and 
value of 
improved solar 
forecasting 

- Improve decision-
making based on 
solar forecasts. 
- Advance solar 
energy penetration 
due to added value 
of forecasts. 

Improve short-
term solar 
irradiance 
forecasts 

- Whole sky imagery 
- Satellite imagery 
- Real-time radiation 
data 
- Power data 
- Advection algorithms 
- Multi-sensor 
Advective Diffusive 
(MADCast) system 

Research 
- Image processing 
- Advection algorithms 
- Nowcasting 
- Regime identification 

Better short-term 
solar irradiance 
forecasts 

Improved ability to 
integrate solar 
energy into grid for 
reliability 

Improve day-
ahead solar 
irradiance 
forecasts 

- Advanced Research 
WRF model 
- Assimilation methods 
- Improved cloud 
physics and dynamics 
- Field data 

Research 
- Cloud development 
- Cloud evolution 
- Radiative transfer 
- Aerosol physics 
- Blending algorithms 
- Power conversion 

Improved day-
ahead solar 
irradiance 
forecasts 

Make solar energy 
more economical in 
day-ahead trading 

Determine 
economic 
benefits of 
improved solar 
irradiance 
forecasting  

- Forecast providers 
- Utilities 
- ISOs 
- Instrumented sites 

Demonstration 
- Integrate forecasts into 
operations 
- Apply metrics 
- Evaluate Input 

Show that 
improved solar 
irradiance 
forecasting 
benefits 
stakeholders 

Advance the 
penetration of solar 
energy through 
stakeholder buy-in 

 Disseminate 
knowledge to 
stakeholder 
community to 
advance the 
state of practice 

- Project participants 
- Research results 
- Quantified benefits 
- Year’s forecasting 
experience 

Dissemination 
- Present results 
- Publish 
- Special sessions at 
conferences  
- Workshops 
- Technical reports 

Transfer 
knowledge to 
broad cross-
section of 
stakeholders 

Stakeholder buy-in 
and optimal 
application of 
improved 
forecasting 
methodologies 

 
1.2 STATE-OF-THE-SCIENCE 

The NCAR-led team was already immersed in solar forecasting research at the time of the award, 
along with other research teams throughout the world. Real-time solar power forecasting is 
reviewed in chapters in a few recent books, including Kleissl (2013) and Troccoli, Dubus, and 
Haupt (2014). The issue is well motivated in works like Dubus (2014) among others. Lorenz et al. 
(2014) reviews the extensive work of the team at the University of Oldenburg in Germany. The 
Australian initiative is ongoing as motivated in Davy and Troccoli (2012). Schroedter-Homscheidt 
et al. (2013) point out the need for excellent aerosol prediction for solar power prediction and 
discuss techniques leveraging European Centre for Medium-Range Weather Forecasts (ECMWF) 
chemistry forecasts. The difficulties in predicting cloud cover at specific locations are well known.  
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Solar power prediction is accomplished by different techniques for differing time scales. Solar 
energy is particularly variable over space and time because of its myriad complexities caused by 
the dynamic evolution of clouds. Lew et al. (2012) provides evidence of the challenge of solar 
power integration with the results showing the variability of power output was higher with high 
penetrations of solar than with high penetrations of wind. The response speed (ramp rate and start 
time), response duration, frequency of use (continuously or only during rare events), direction of 
use (up or down), and type of control characterize a utility company’s operating reserves (Ela et 
al. 2013). These operating reserves are appropriately managed with accurate solar forecasts, as 
Curtright and Apt (2008) have shown that the cost of energy can be strategically minimized with 
knowledge of the short- and long-term PV variations. The quantification of temporal solar 
irradiance variability caused by the dynamic evolution of clouds has been extensively studied. 
Hinkelman (2013) found that not only are the irradiances themselves larger in the middle of the 
day but also the fractional change in irradiance from one time to another is larger. She also 
determined that cloud optical depth and cloud height are the best predictors of irradiance variability 
at one-minute time resolution. Gueymard and Wilcox (2011) analyzed the regional dependence of 
solar power and showed greater variability tends to occur in coastal areas, particularly along the 
California coast and in mountainous areas because of the micro-climate effects of topography. 
Kuszmaul et al. (2010) analyzed 1-sec PV output data and showed that it is linearly proportional 
to the spatial average of irradiance. Rayl et al. (2013) performed an irradiance co-spectrum analysis 
and concluded that solar power site aggregation could greatly reduce power variability on short 
time scales depending on the distance between sites.  

The non-linear variations of solar irradiance result from the complex evolution of clouds in the 
atmosphere; thus, many studies have tested non-linear solar irradiance prediction methods (Mellit 
2008; Martin et al. 2010; Bouzerdoum et al. 2013; Fu and Cheng 2013; Marquez et al. 2013a; 
Inman et al. 2013; Fernandez et al. 2014; Chu et al. 2014). These studies, however, have not 
focused on the explicit prediction of both the temporal variability and the spatial variability of 
solar irradiance.  

There have been multiple recent studies focused on the prediction of solar radiation or solar power 
with statistical learning (also known as artificial intelligence or data mining). Mellit (2008) 
provides a summary of techniques for forecasting solar radiation and states that 37 studies have 
used neural networks in the modeling and prediction of solar radiation with the second most 
frequent method, fuzzy logic, used five times. More recently, Martin et al. (2010) showed a final 
model based on Artificial Neural Networks (ANN) improves accuracy 4.84% to 25.58% over 
persistence for half-daily radiation forecasts. Fernandez et al. (2014) concluded that the ANN 
model has accurate performance for days characterized by direct irradiance (clear days) and for 
days characterized by diffuse irradiance (cloudy days). Chu et al. (2013) used an ANN with sky 
image processing to predict 1-min average direct normal irradiance (DNI) for time horizons of 5 
and 10 minutes. Another short-term prediction study used a regression technique on all-sky images 
to predict solar radiation five minutes in advance with a mean absolute error of around 22% (Fu 
and Cheng 2013). Autoregressive techniques have also shown solar power prediction capability, 
with Bouzerdoum et al. (2013) using a hybrid seasonal autoregressive moving average and support 
vector model to predict hourly power output. All of these studies advanced prediction of solar 
irradiance, but none claim to be optimal.  
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Sky imaging is another approach to very-short-range solar forecasting. The team has been aware 
of high-quality work being done at the University of San Diego and elsewhere, and has interacted 
with Jan Kleissl of USCD and his collaborators on several occasions. His team’s work with total 
sky imagers (TSIs) is reported in Urquhart et al. (2015) and Bosch and Kleissl (2013). The BNL 
approach is unique and different from what Kleissl and his team are doing. Huang et al. (2013) 
describe the initial methodology for nowcasting solar irradiance with a single TSI. There are three 
main steps to their algorithm: 1) TSI image preprocessing, 2) cloud motion estimation, and 3) solar 
radiation estimation. They showed positive results for their 1-minute and 2-minute irradiance 
forecasts. Peng et al. (2015) extended the BNL algorithm of Huang et al. (2013) to use three TSIs 
to better estimate the 3D cloud field. By comparing overlapping cloud regions in multiple TSIs 
(located several hundred meters to about 1-2 kilometers apart), estimates of the height of each 
cloud feature are derived using geometry. Knowing the height of each cloud feature greatly aids 
in estimating cloud motion vectors, and allows for improved tracking of clouds at different levels 
(i.e., cumulus vs. cirrus clouds) over the single-TSI algorithm. Peng et al. (2015) also developed a 
support vector regression model with a radial basis function to forecast solar irradiance based on 
recent TSI frames and pyranometer data. This new irradiance prediction model was shown to have 
improved error metrics compared to other radiation prediction models tested extendingto 3-minute 
forecasts. Even with multiple TSIs, however, the irradiance prediction horizon is limited to 
approximately 10-15 minutes when low cumulus clouds are present, as they will typically transit 
across the image scene in that amount of time. In situations where high cirrus clouds are present, 
however, irradiance forecasts could potentially be extended to 30-60 minutes, as they take longer 
to transit across the image scene. BNL continues these advances as shown in section 2.1. 

Satellite based cloud prediction is another important method that lies between the very-short-range 
and the medium-range time scales. An overview of the current state-of-the-art in solar forecasting 
is provided in the book edited by Kleissl (2013), including details of physically based satellite 
methods for short-term forecasting, provided in Chapter 3 by Miller et al. The problem is rooted 
in our ability to utilize multi-spectral satellite imagery (preferentially from the geostationary 
constellation) to characterize the geometric and microphysical properties of meteorological clouds. 
Knowledge of cloud locations, heights, and properties can be used to estimate the down-welling 
solar irradiance (direct and diffuse components) at the cloud shadow locations. Provided 
information on cloud motion, the shadows can be propagated forward in space/time to provide a 
time-series of solar irradiance at a given location.  

For longer time scales beyond about 3-6 hours, it is necessary to employ numerical weather 
prediction (NWP). The initialization of clouds in NWP models is a difficult problem that has 
recently received increased scrutiny. Current data assimilation methods are challenged by the high 
spatio-temporal variability of clouds, strong non-linearities in the radiative transfer calculation and 
simulated microphysical properties, and non-Gaussian error distributions. Model balance via 
ensembles of forecasts is affected by sampling error and systematic model errors. For these 
reasons, NWP forecasts are usually inferior to simpler advection methods in the first few hours of 
the forecast (i.e. nowcasting). But over longer timeframes, it is essential to include the cloud 
formation and dissipation that the NWP models provide. 

Under cloudless or partly cloudy conditions, aerosols have a strong impact on surface irradiance, 
particularly its direct and diffuse components. Under such circumstances, the solar forecasting 
performance of NWP models, such as WRF or ECMWF, has been found to be highly biased 
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(Gerstmaier et al. 2012; Ruiz-Arias et al. 2012; Troccoli and Morcrette 2012). An appropriate way 
to handle aerosols is to apply aerosol transport models, such as put forth in the Monitoring 
Atmospheric Carbon and Climate (MACC) project (Schroedter-Homscheidt et al. (2013). The 
aerosol model developed at ECMWF (Morcrette et al. 2008) has a remarkable 3-hourly resolution, 
a relatively good spatial resolution (~120-km grid spacing), and benefits from the assimilation of 
Moderate Resolution Imaging Spectroradiometer (MODIS) observations. Outputs of this model 
are now commercially used in the prediction of solar irradiance on a global scale, with noticeable 
improvements in the resulting global horizontal irradiance (GHI) and DNI accuracy (Cebecauer et 
al. 2011a,b). Data from the MACC project must be validated over the U.S. Day-ahead high-quality 
aerosol forecasts and could be used to predict GHI and DNI with WRF. The NASA Goddard Earth 
Observing System, version 5 (GEOS-5), offers another real-time analysis and prediction of 
aerosols (Randles et al. 2013). Substantial improvements in day-ahead solar forecasts under 
cloudless or partly cloudy days, particularly over areas of large aerosol variability, can be expected 
from these developments. 

In a recent comparison of various solar forecasting models for the U.S., Perez et al. (2011) showed 
that NOAA’s operational models (that use WRF as the underlying numerical model) lagged other 
international forecasting models in terms of accuracy of their solar irradiance predictions. So far, 
this has been interpreted partly due to shortcomings in cloud modeling and data assimilation. It is 
possible that the radiative transfer algorithms in the U.S. forecast models are not optimal for this 
application. This hypothesis was confirmed by Ruiz-Arias et al. (2012) in the case of the WRF 
model. That study highlighted biases in one frequently used radiative algorithm in WRF, and a 
need for adding aerosol data for its improvement.  

The conversion of irradiance to power depends on the particular type of hardware installed at the 
solar farm as well as local conditions. There are models, such as PVWatts (http://pvwatts.nrel.gov/) 
that can do this power conversion. In prior work with wind energy, we have found however, that 
empirical power conversion methods can outperform models (typically power curves for wind 
energy) because they take into account local effects such as terrain blocking, impact of upstream 
turbines, density, etc. (Parks et al. 2011). For solar energy, such effects could include dust, 
shadowing, etc., that cannot be captured in any general model. Thus, as part of this project, we 
have developed such empirical methods to use across a broad range of solar technologies and 
geographic locations. 

Any forecast requires state-of-the-science evaluation. Traditional metrics are commonly used for 
evaluation, such as in Marquez and Coimbra (2011). Diagnostic methods provide information that 
is user-relevant, such as metrics related to ramp variability. Such metrics may include application 
of spatial methods such as “object-based” approaches that identify and compare characteristics of 
spatial objects (Davis et al. 2009). In addition, they may identify specific events in time, such as 
changes in magnitude of insolation at a point location. They also may identify rates of change, 
such as ramp rates (e.g., Mathiesen et al. 2012), and they may consider temporal and spatial 
attributes of the forecasts (e.g., Brown et al. 2012) that are often very relevant for decision-making 
based on the forecasts. Metrics related to economic and other benefits are the most complex to 
derive, but may be the most meaningful for end users.  

In summary, although there have been some important recent accomplishments in predicting solar 
power, there is plenty of room for advancement. This Public-Private-Academic Partnership 

http://pvwatts.nrel.gov/
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worked to fill the gaps in the research and then used the research results to build a functioning, 
seamless Sun4Cast®  forecasting system. 

1.3 PROJECT PROGRESSION OVERVIEW 
 

1.3.1 First Year Full Team Workshop – Cementing the Team 

The first year workshop was held 12-13 March 2013. This was an opportunity to bring the team 
together at NCAR to think through how to integrate all of the research into a working Sun4Cast®  
system. The workshop was configured to emphasize meeting the needs of the user. After an initial 
introduction to the project goals, a charge from the DOE SunShot Director, and introductions from 
NCAR Research Applications Laboratory Director, the workshop commenced with a user panel 
of utility and ISO representatives to explain how they use forecasts and what they need in the 
forecast, as well as when it must be delivered to be most useful. We saw this session as “beginning 
with the end in mind” as a way to picture the project outcome. The next panel was comprised of 
the forecast provider partners, allowing them an opportunity to discuss how they work with the 
end users to meet their needs, as well as with researchers to advance their systems. 

With this background from the users and providers of the forecasts, the afternoon of March 13th 
was devoted to developing a shared conceptual model of the value chain. The group broke into 
five pre-assigned teams that mixed forecast users, providers, and researchers to develop mental 
models of the forecast value chain, with our economist, Jeff Lazo, providing guidance to this social 
science process. Each group was assigned a moderator and a rapporteur (see Table 1-2) The 
objectives of this exercise were: 
 
• Team building 
• Building a qualitative model of the weather-solar value chain 
• Facilitating discussion and enhancing understanding across all participants in the project  
• Explaining how research to improve forecasts will create value 

The value chain guidance provided by Dr. Lazo appears as Figure 1-1. All team members were 
given general guidance to spend the first 5-8 minutes “drawing” their own value chain, considering 
issues such as: 

• What values / decisions / outcomes do you think are important to end-users / decision-
makers? 

• How does weather impact those?  
• How does weather information relate to those? 
• How would changes in / improvements in weather forecasts change those outcomes? 
• Who are the decision-makers? 
• What are their needs, resources, constraints? 
• How do different “agents” in the value change add value to information? 
• What if this project improved the relevant forecast by x%? 
• What is the relevant forecast information? 
• What does an x% improvement mean? 
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• How does an x% improvement affect outcomes for weather forecast vendors, utilities, ISOs, 
and regional transmission operators (RTOs)? 

Then, the team members were asked to discuss these issues as a team and work toward producing 
a unified value chain. At the end of the session, the rapporteur and moderator met over the break 
and developed a 3-5-minute summary of the conceptual model and outcome of their session, 
including 

• Areas of agreement, disagreement, …  
• Gaps, misunderstandings, points of confusion, …  
• Issues to discuss across the broader group 

We found that this approach was quite successful for team building and enabled the group to come 
to a joint visualization of the project goals. Hence, the following day, we delved deeper into the 
elements of the forecasting systems and determined how to fit them into one cohesive whole. 
Figure 1-2 illustrates a more complete vision that fits the value chain tothe elements of the project. 
The second day of the workshop included break-out discussion groups configured to bring together 
specific teams on the project. The project progressed with five primary teams that discussed their 
research and advances at least monthly. These teams were 1) Nowcasting, 2) Numerical Weather 
Prediction, 3) Engineering, 4) Metrics, and 5) Management (that includes all team leads). This was 
an effective way to manage the flow of the project. 

 

Table 1-2. Teams assigned for the Mental Modeling exercise at the first year workshop. 

Team – Room Moderator Rapporteur 
Yellow Team Tressa Fowler Kirsten Orwig 

Red Team Bill Mahoney Melinda Marquis 
Blue Team Tara Jensen Louisa Nance 

Green Team Jeff Lazo Jennifer Mahoney 
Weather Team Luca Delle Monache Tom Auligné 

 

 
Figure 1-1. A general value chain describing the process leading tog value to the end user. 

 

Weather Monitoring 
Observation Modelling Forecasting Dissemination & 

Communication
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Figure 1-2. Value chain implementing a weather decision support system for solar power. At the bottom are the 

components of the NCAR team’s system that build toward providing an economic impact of this system. 

1.3.2 Metrics Development 

The first year was devoted to research on individual portions of the system using the team approach 
discussed above. Development of metrics was accomplished jointly with a collaborative team that 
included DOE SunShot Leadership, the IBM Watt-Sun forecasting team, and NOAA team 
members. That group held several workshops that included end users associated with meetings of 
the Utility Variable Generation Integration Group Forecasting conferences and Annual Meetings 
of the American Meteorological Society. With that input and many team telecons, they designed 
a table of proposed metrics to exercise (Table 1-3). More details of metrics and their applications 
appears in section 5.2. 
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Table 1-3. Consensus of metrics to be exercised in evaluating solar power forecasting systems. 

 

In parallel, the NCAR Metrics team worked with our utility stakeholders and discussed methods 
to assess value provided by improved forecasting. The economic metrics developed are illustrated 
in Table 1-4 and discussed in more detail in section 5.3. 
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Table 1-4. Summary of feedback from utility partners on Economic/Reliability Metrics teleconference. Green – can 
be calculated and expected to be impacted by improved forecasts. Orange – difficult to calculate and/or less 

impacted by improved forecasts. Yellow – investigating how to calculate. White – no response. 

 

ID Metric NY partners 
(NYISO, LIPA, 

NYPA) 

SMUD Xcel 

BV1 Operating Reserves See Regulation Reserves (ER2) 

ER1 Non-Spinning Reserves Not applicable because non-spinning 
not centered on renewables 

ER2 Regulation Reserves    

EV1 & 
ER3 

Production Costs    

EV2 Electricity Load Payment    

EV3 & 
ER3 

Solar Generation Curtailment Not applicable until more penetration 

EV4 Power Trading Impact Not applicable until more penetration 
and in Day Ahead market 

ER4 NERC CPS2 Performance Same as Regulation Reserves (ER2) 

ER5 Distribution Substation/Feeder Voltage 
Stability 

Too Complex and forecasts not at 
feeder level – see P2 for suggested 
change 

ER6 Increased Committed Solar Power 
Generation 

See Power Trading Impact 

P1 Load Forecasting Improvement    

P2 Storage Optimization    

 
 
1.3.3 Parallel Development of System Models 

The science teams (Nowcasting and Numerical Weather Prediction) worked in parallel during 
thefirst year to develop their systems to the point where they could be integrated. The results of 
the Nowcasting research and the WRF-Solar™ day-ahead system are described in chapters 2 and 
3 respectively. Figure 1-3 illustrates our view of how these Nowcasting and NWP systems work 
together to produce a seamless forecast across scales. 
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Figure 1-3. Sun4Cast®  forecasting system predicts across scales. 

 

1.3.4 System Integration 

It is a large task to integrate the various models described in this document into the Sun4Cast®  
System. That was the job of the engineering team, comprised of professional software engineers 
who are skilled in bringing together multiple models and observations and configuring a system 
to optimize   its predictive skill. More details of their systems appear in chapter 4. Part of that work 
includes computing the uncertainty in the forecast. This is a Big Data problem as described in more 
detail in Haupt and Kosovic (2015, 2016). Section 4.6 describes application of the analog ensemble 
(AnEn) method to this problem. 
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Figure 1-4. The engineered Sun4Cast®  system. 

 

1.3.5 Second Team Workshop 

After each team spent about 15 months in research, model construction, testing, and tuning the 
models, the system components were brought together and tuned as an integrated system. A second 
workshop was held 26-27 August at NCAR in Boulder, CO, to discuss the advances and work yet 
to be accomplished (see Figure 1-5). Researchers presented details of their models and results of 
their initial testing. There were opportunities to discuss these advances and next steps in break-out 
groups, panel discussions, and in the large group. The final workshop was a panel discussion with 
a panel comprised of end users. Industry representatives were afforded an opportunity to provide 
their thoughts and feedback, formulating guidance for the team to use in the rest of the project and 
tuning the integrated system. 
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Figure 1-5. Vignettes from the second-year workshop (photos by Jared Lee). 

 

1.3.6 Quasi-operational Demonstration 

The final portion of the project was spent consistently operating the system in several key utility 
regions with varying climates and geography. Figure 1-6 maps these regions and the utility partners 
who participated in the exercise. 
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Figure 1-6. Regions of quasi-operational Sun4Cast®  demonstration. 

 

1.3.7 Formal Assessment and Documentation 

Throughout the project, the metrics team performed periodic assessments. These assessments 
provided excellent feedback for the model research teams so that they could further improve their 
systems. At the end of the project, a formal project assessment wasaccomplished. The results of 
that assessment appear in chapter 5. 

1.4 ACCOMPLISHMENTS 

The team demonstrated and evaluated a working Sun4Cast®  solar power prediction system that 
includes the multiple components described herein, including WRF-Solar™, multiple models from 
national centers, TSICast, CIRACast, and MADCast, MADWRF, as well as statistical models. 
The individual components and the overall Sun4Cast®  system werevalidated using the metrics 
developed at the beginning of the project. The team met or exceeded target values specified in 
most of the milestone tables in the statement of work to DOE. Data streams from various model 
systems were made available to the forecasting partners, forecasts were regularly provided to the 
utility and ISO partners, and feedback from the partners was incorporated into the forecasting 
models.  

The Sun4Cast®  system (Figure 1-4) has two main forecast tracks: a Nowcast track that forecasts 
at high temporal resolution extending to 6 hours, and a DICast® track that forecasts at coarser 
temporal resolution out several days. Both these modules apply a consensus forecasting approach. 
That is, they consider multiple inputs and perform a forecast integration that takes advantage of 
the strengths of each input. While the consensus forecasting approach has been applied to 
forecasting more common weather variables (e.g., air temperature), in the past it had not previously 
been applied to solar irradiance forecasting in any significant way. No other public systems use a 
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consensus forecasting approach. In the private sector, some companies may use a consensus 
approach, while others rely on a single-source model; much of this is proprietary and not 
disseminated. Forecasts are provided every 15 minutes and extend to 72 hours and can be provided 
as far out as 168 hours. 

The team conducted transformative research in statistical forecasting, advective/dynamic short-
range forecasting, nowcasting with real-time data assimilation, satellite techniques and data 
assimilation for solar forecasting, numerical weather prediction with the WRF-Solar™ model 
(including cloud physics parameterization, convective parameterization, clear-sky aerosol 
estimation, and radiative transfer modeling), radiation-to-power conversion, and uncertainty 
quantification. 

Much scientific and engineering progress was made. The rest of this report details the results. 
Conclusions, lessons learned, networks fostered, and recommendations of best practices in solar 
power forecasting appear in chapter 6. 

1.5 PROJECT OVERVIEW PUBLICATIONS 
 

Book Chapters 
Haupt, S.E., P.A. Jiménez, J.A. Lee, and B. Kosovic, 2016: Principles of Meteorology and 

Numerical Weather Prediction, in Renewable Energy Forecasting: From Models to 
Applications, G. Kariniotakis, Ed., Elsevier, London, UK. Submitted and in review. 

Journal Papers 

Haupt, S.E. and B. Kosovic, 2016: Variable Generation Power Forecasting as a Big Data 
Problem, submitted to IEEE Transactions on Sustainable Energy. 

Conference and Workshop Presentations (presenter in Bold) 

Haupt, S.E., 2016: Comparison of Solar Power Forecasting Techniques, Joint Session between 
14th Conference on Artificial and Computational Intelligence and its Applications to the 
Environmental Sciences and Seventh Conference on Weather, Climate, Water, and the New 
Energy Economy, AMS Annual Meeting, New Orleans, LA, Jan. 12. 

Haupt, S.E., 2016: Integrating and Operationalizing Renewable Energy Forecasts: It Takes a 
Community, Seventh Conference on Weather, Climate, Water, and the New Energy 
Economy, AMS Annual Meeting, New Orleans, LA, Jan. 11. 

Haupt, S.E. and B. Kosovic, 2015: Big Data and Machine Learning for Applied Weather 
Forecasts: Forecasting Solar Power for Utility Operations, IEEE Symposium Series on 
Computational Intelligence, Capetown, South Africa, December 9. Fully reviewed paper. 

Haupt, S.E., 2015:  The Sun4Cast Solar Power Forecasting Decision Support System, American 
Solar Energy Society Conference, State College, PA, July 28. 

Haupt, S.E., S. Drobot, T. Jensen, 2015:  The Sun4Cast Solar Power Forecasting System. 
International Conference on Energy and Meteorology, Boulder, CO, June 23. 
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Vaucher, G., S.E. Haupt, D. Sauter, 2015: A Review of Atmospheric Forecasting Tools being 
Developed for Renewable Energy, 83rd Military Operations Research Society Symposium 
[MORSS] in Alexandria, VA, Jun 22-25. 

Haupt, S.E., 2015:  Renewable Energy Needs, Rapid Update Analysis/Nowcasting Workshop, 
NOAA ESRL, Boulder, CO, June, 4. 

Haupt, S.E., 2015:  NCAR’s Solar Power Forecasting Research, California Utility Forecasting 
Meeting, Folsom, CA, April 29 (invited). 

Haupt, S.E., 2015:  Counting on Solar Production: Advances in Forecasting, Utility Solar 
Conference of the Solar Electric Power Association, San Diego, CA, April 28 (invited). 

Haupt, S.E., 2015: Solar Power Forecasting: Sun4Cast and GRAFS, Utility Variable Generation 
Integration Group Forecasting Workshop, Lakewood, CO, Feb. 19, 2015. 

Haupt, S.E., 2015: The Sun4Cast Solar Power Forecasting System, Joint Session between Sixth 
Conference on Weather, Climate, and the New Energy Economy and 13th Conference on 
Artificial Intelligence, AMS Annual Meeting, Phoenix, AZ, Jan. 7. 

Haupt, S.E., B. Kosovic, and S. Drobot, 2014:  Advances in Solar Power Forecasting, Fall 
Meeting of the American Geophysical Union, San Francisco, CA, Dec. 15. 

Haupt, S.E. and S. Drobot, 2014: New Irradiance Models for Solar Energy, Solar 2014 sponsored 
by the American Solar Energy Society, San Francisco, CA, July 7. (full paper). 

Haupt, S.E. and S. Drobot, 2014: A Public-Private-Academic Partnership to Advance Solar 
Power Forecasting, SunShot Summit, Anaheim, CA, May 20. Invited Poster Presentation 
and Review. 

Haupt, S.E., 2014:  Renewable Energy, UCAR Research and Partnership Meeting, Boulder, CO, 
April 22. 

Haupt, S.E., 2014:  NCAR-led SunShot Solar Forecasting Project, Utility Variable Generation 
Forecasting Workshop, Tuscon, AZ, Feb. 26. Invited Panel Presentation. 

Haupt, S.E., 2014: Advances in Predicting Solar Power for Utilities, Fifth Conference on 
Weather, Climate, and the New Energy Economy, AMS Annual Meeting, Atlanta, GA, 
Feb. 6.  

Haupt, S.E., 2014:  Using Artificial Intelligence to Inform Physical/Dynamical Models, 12th 
Conference on Artificial and Computational Intelligence and its Applications to the 
Environmental Sciences, Invited Panel Presentation, Feb. 3. Invited Panel Presentation. 

Haupt, S.E., 2013: A Public-Private-Academic Partnership to Advance Solar Power Forecasting, 
International Conference on Energy and Meteorology, Toulouse, France, June 25. 

Haupt, S.E., 2013:  A Public-Private-Academic Partnership to Advance Solar Power Forecasting, 
American Solar Energy Society Meeting, Baltimore, MD, April 18. 

Haupt, S.E., 2013:  A Public-Private-Academic Partnership to Advance Solar Power Forecasting, 
Utility Variable Generation Integration Group Workshop on Variable Generation 
Forecasting Application, Salt Lake City, UT, Feb. 27. (Invited panel presentation) 
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Haupt, S.E., 2013:  A Public-Private-Academic Partnership to Advance Solar Power Forecasting, 
AMS Solar Metrics Workshop, AMS Annual Meeting, Austin, TX., Jan. 9. 

Short Courses and Workshop Presentations 

Haupt, S.E., 2015:  Short-range Weather Forecasting (hours to days) for Energy Applications. 
International Conference on Energy and Meteorology Pre-Conference Seminar, Boulder, 
CO, June 22. 

Haupt, S.E., 2015: Introduction to Probabilistic Forecasting, Utility Variable Generation 
Integration Group Tutorial on Stochastic Forecasting Methods and Applications, 
Lakewood, CO, Feb. 18, 2015. 

Haupt, S.E., 2014:  NCAR’s Research including Renewable Energy, Kuwait Institute for 
Scientific Research presents Workshop on Solar Resource Assessment, Kuwait City, Nov. 
17, 2014. 

Haupt, S.E., 2013:  Meteorological Forecasting I: Some Basic Considerations for Atmospheric 
Modeling, COST Weather Intelligence for Renewable Energy Summer School, Montegut, 
France, July 1, 2013. 

Haupt, S.E., 2013: Meteorological Forecasting II: Predicting Atmospheric Realizations: Dealing 
with Uncertainty in Applied Meteorology, COST Weather Intelligence for Renewable 
Energy Summer School, Montegut, France, July 1, 2013. 

Haupt, S.E., 2013: What is your mental model of using meteorological uncertainty information 
for energy?  Workshop on Uncertainty in Meteorology for the Energy Sector, 
Preconference Seminar, International Conference on Energy and Meteorology, Toulouse, 
France, June 24. 

Haupt, S.E., 2013: How can we better facilitate using meteorological uncertainty information for 
energy?  Workshop on Uncertainty in Meteorology for the Energy Sector, Preconference 
Seminar, International Conference on Energy and Meteorology, Toulouse, France, June 24. 
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2 NOWCAST SYSTEMS 

In this chapter we present details of each of the component models in the Sun4Cast®  nowcasting 
system: TSICast, StatCast, CIRACast, MADCast, WRF-Solar-Nowcasting, and MAD-WRF. 
Additionally, in section 2.7, several case studies are analyzed, comparing predictions made by 
some of these systems. 

2.1 TSICAST 
The project team members at BNL developed the TSICast model to predict GHI in the very short-
range, extending to a few minutes, relying primarily on digital photographs from total sky imagers 
(TSIs). TSICast is described in detail in this section. The BNL team was led by Dantong Yu, 
Zhenzhou Peng, Dong Huang, John Heiser, Shinjae Yoo, and Paul Kalb. 

2.1.1 Motivation 

Accurately predicting solar energy production, especially in short-term and mid-term horizons, 
becomes increasingly important for solar photovoltaic (PV) power plants. Because the sun-
occlusion effect from clouds is the primary source of large fluctuations in the energy output of 
commercial solar farms, the ability to estimate cloud-induced variability in solar irradiance is 
critical to enable real-time or near real-time load shedding, balancing, and dispatching. 

Although state-of-the-art techniques often rely on expensive meteorological instruments or remote 
sensing technology, e.g., satellite imagery to track clouds and forecast solar irradiance, some of 
these methods estimate clouds at a coarse granularity, such as spatial scales of 1 km or larger and 
temporal scales of 30 minutes or longer. However, an ever-growing number of distributed rooftop 
solar panels and storage solutions in smart-grids operate in a much higher spatio-temporal 
resolution, and so this leads to a pressing need for very short-term solar forecasts that predict 
minutes- or even seconds-ahead solar availability and variability. To fully address the problem, in 
the work detailed in this section, we integrate multiple sources of images collected from satellite 
imagers and ground-based cameras, and perform cloud tracking and modeling for more accurate 
solar energy prediction. 

The intermittency and variability of irradiance compromises the reliability of solar plants and 
limits the adoption of solar power by utility companies. In many regions, the short-term variability 
within several minutes is the chief concern among utilities and balancing authorities regarding 
solar energy. For example, ground solar irradiance can decline by more than 80% due to cloud 
interference. Our data, collected from Long Island Solar Farm (LISF), New York, shows that GHI 
may drop over 500 W m-2 within 5 minutes, and that such ramp events occur during one out of 
every three days on average (Figure 2-1 and the accompanying table). Cloud-induced variability 
in solar radiation has become one of the biggest concerns for the operators of the power grid, 
particularly as the market share (penetration) of solar energy has ramped up steadily in recent 
years. Consequently, the ability to predict the presence of clouds and to extract their relevant 
features is critical for estimating the variations in solar energy, and thereby, for mitigating the 
effects of the fluctuations in output at utility-scale PV plants. ISOs require a cost-effective solution 
to manage and control the solar power intermittency. Balancing the supply-demand interaction 
while reducing the operation cost of electricity grids is critical to maximize the benefits of solar 
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energy and to ensure the quality of service for customers. As solar energy penetration 
continuously increases, the short-term variability of solar irradiance becomes an increasingly larger 
concern. Multiple decisions, such as to charge and discharge energy storage, to dispatch spinning 
reserves, and to merge production into smart grids i n  o r d e r  to mitigate the instability of solar 
power, requires accurately estimating the ramp events of solar irradiance. 

 

 
Figure 2-1. Volatile ramp events frequently occur within one hour at BNL’s 32-MW LISF. 

 

Predicting ramps of solar irradiance is essentially equivalent to tracking and forecasting cloud 
coverage and sun-occlusion effects. Consequently, the capability to predict the presence of clouds 
and extract their relevant features is critical for estimating the variability in solar irradiance and for 
mitigating the effects of output fluctuations in utility-scale PV power plants. Cloud information such 
as cloud fraction and type can be obtained via NWP models in the hours- to days-ahead time 
frame. However, NWP models do not provide information on the location and movement of clouds 
at a hyper-local scale (order of a few km) for short-term or real-time grid operations. Cloud motion 
is the primary factor to be considered and estimated in our project. Cloud motion (velocity) is 
assimilated as a prominent input feature in most forecast models and is used to find spatio-temporal 
correlations between predicted clouds and solar irradiance fluctuations in the very near future. 
A robust methodology of tracking cloud movements in different time frames and data sources 
is urgently needed for modern solar forecasts. 

Cloud motion tracking is a well-studied field in meteorological and remote sensing research. Cloud 
movement is usually represented by wind field and can be detected with atmospheric numerical 
models. However, a numerical model is still constrained by its resolution and is not suitable for real-
time cloud tracking and minutes-ahead prediction. With the advance in imaging technologies, for 
example, satellite imagery or upward-facing cameras at ground level, a data-driven approach 
provides the necessary resolution and is much faster than NWP models. A stream of sky images 
provides both detailed snapshots, spectral and temporal information of clouds, and allows modern 
techniques of image registration and machine learning to track and predict cloud motions (Hoff 
and Perez 2012; Lave and Kleissl 2013). A variety of imager systems leads to requirements for 
cloud tracking algorithms to function by using observations from multiple sources with 
different temporal and spatial scales. Using multiple images offers new opportunities, for example 
three-dimensional tracking, accurate cloud motion detection, and minimal false estimates. 
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2.1.1.1 Technical Challenges 

Multiple Layers of Clouds 

Individual clouds must be clearly identified in images and, more importantly, located in three-
dimensional space so as to provide faithful spatial correlation with ground-based measurements 
and actual production. However, clouds usually have complex vertical distributions and multiple 
layers, with the base height typically ranging from hundreds of meters to several kilometers above 
ground level. More importantly, each layer of clouds has distinct textural patterns, and wind 
velocity usually changes with height. Therefore, the sun-occlusion effect is extremely challenging 
to track due to the distinct layers and multiple movement patterns. 

The core aspect of multi-layer cloud identification is to determine the cloud motions and height of 
each layer on images. When there exists only one image source, only planar 2-D information is 
available, and each layer must have a distinct motion pattern to differentiate layers. Any tracking 
algorithm that uses only single images generates inaccurate results when tracking non-rigid 
objects, such as clouds (Weiss 1997). Multiple image sources provide necessary depth information 
to determine cloud layers with a higher accuracy, by allowing the identification of clouds directly 
in a 3-D space. Furthermore, satellite imagery has multiple channels, each of which has different 
spectral sensitivity and detects cloud textural patterns under different spectra, providing the 
information necessary to distinguish vertical layers. 

Complex Cloud Tracking 

Visualization techniques can be applied to detect movements of clouds from various types of images, 
such as visual channels of satellite images or sky images obtained at ground level, and to generate 
accurate pixel-wise motion vectors to represent real spatial movements. However, given the 
complex physics governing cloud motion and life cycles, in addition to the texture and non-rigid 
shapes of clouds, tracking cloud motion for the purpose of solar prediction is a challenging 
problem for both computer vision and atmospheric science research. 

The first issue is the variation of cloud type and color in imagery. It is extremely difficult to treat 
clouds as objects and detect their movements across frames based on image segmentation (Shi and 
Malik 2000), because observed clouds belong to different types, have different shapes, and can 
have obscured edges. Therefore, traditional motion tracking methods that rely upon image 
segmentation tend to generate inconsistent results, and need to be tuned carefully for different 
images and cloud conditions. In practice, tracking models are customized and vary with the 
different cameras in use and their resolutions. None of previous approaches have taken these types 
of cloud information into consideration and adjusted automatically for different cloud conditions. 

Another factor that impairs tracking is cloud deformation or the arbitrary shape change with cloud. 
Existing cloud tracking models tend to over-simplify the problem and assume constancy in cloud 
shapes and velocity over a given time window. These methods work well for scattered clouds that 
do not undergo significant shape changes or vertical motion. However, more complex cases, such 
as cloud deformation and multiple cloud layers with different motions, greatly deteriorate 
detection accuracy.  
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Solar Irradiance Modeling 

Once we track clouds and predict their future locations, subsequently we need to extract 
addi t ional  significant features from cloud images, along with solar irradiance measured by 
ground-based pyranometers, and estimate the potential solar irradiance value at a future time. The 
most significant challenge remains how to associate spectral and textural features of clouds to 
a particular solar irradiance value. Clouds tend to have volatile shapes and various luminance 
patterns over a sequence of images. Moreover, different types of clouds have distinct absorption 
and reflection characteristics in the solar spectrum, and directly impact the irradiance at ground 
level. Consequently, a rigorous method is needed to determine relevant features of clouds in images, 
especially those in the area interfering with sunlight. Because of instability from noisy pixels and 
luminance variation on images, any method needs to consider global features as well. We need 
to develop a new solar irradiance model that integrates both image features for prediction and 
actual ground-based irradiance measurements for regression, cross-validation, and model training. 

2.1.2 Literature Review 

Many motion-tracking techniques have been proposed to detect the motion of objects in terms of the 
pixel-wise movement across different images. However, only a few of them can be used to track 
cloud motion because of its non-rigid shape and formation. In the past, cloud motion vectors were 
usually obtained from satellite images (Leese et al. 1970; Cote and Tatnall 1995; Evans 2006; 
Corpetti et al. 2008). With the advent of inexpensive digital cameras and the emerging need for 
solar forecasts with the fine granularity that is beyond the spatio-temporal resolution of satellite 
images, recent research focused on using these ground-based cameras to track the very short-term 
motions of clouds (Chow et al. 2011; Wood-Bradley et al. 2012; Huang et al. 2013). These 
methods fall into three main categories based on the scale and tracking criterion of the motions. 
Here we discuss representative works in each category in terms of their approaches and the 
adopted optimization methods. 

2.1.2.1 Optical Flow Based Motion Tracking Methods 

In the field of computer vision, motion tracking is usually resolved by estimating the optical flow 
(OF), i.e., the pixel-wise distribution of prominent velocities of brightness/texture patterns on an 
image. In general, an OF method can obtain dense motion vectors at the granularity of a pixel, and 
was proven to be quite effective in detecting cloud motions in satellite images (Corpetti et al. 
2008). Horn and Schunck (1981) (hereafter HS81) and Lucas and Kanade (1981) (hereafter LK81) 
proposed the original approaches of optical flow. The HS81model formulates optical flow as an 
optimization problem assuming that motions have global smoothness. The advantage of this 
model is that it can propagate information over a large distance within the image and fill texture-
less regions, e.g. thin or stratus clouds, with the motions extracted from the boundaries. 
Consequently, it is widely incorporated into other variational models and customized for estimating 
cloud motions (Héas et al. 2007). Another state-of-the-art methodology, the LK81 model, 
constrains motions and preserves local smoothness, thereby satisfying the gradient constraint 
among neighboring pixels or in a pre-defined region. In particular for sky imagery, the LK81 
method allows us to identify the dominant motion vector within cloud/sky regions, and therefore, 
is less sensitive to image noise. Wood-Bradley et al. (2012) adopted the LK81 methodology to 
estimate cloud motion on images captured by a laptop camera. Instead of using the brightness 
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intensity or the grayscale image, they converted the original image to the scale of blue-red 
difference to emphasize its prominent edges and corners. Wood-Bradley et al. (2012) 
subsequently extracted the prominent features at the points of interest with a large gradient of 
intensity for calculating optical flow, and then manually removed the noisy features to refine the 
tracking result. 

Many variants of the classic models of LK81 and HS81 were developed to improve the quality of 
optical flow. It is beyond the scope of this technical note to review the entire literature, and to 
search for appropriate techniques for the purpose of cloud tracking. Hence, we focus on several 
typical models that can effectively address the problem of cloud tracking. Chow et al. (2015) 
utilized a well-known global smoothing method in optical flow to detect cloud motions on the basis 
of a new sky imager system (USI; Urquhart et al. 2014). They also adopted the robust estimation 
framework that originally appeared in Black and Anandan (1996) (hereafter BA96). Compared 
with their previous work on estimating the block-wise motion (Chow et al. 2011), the robust 
optical flow approach, BA96 is claimed to achieve more than a 19% improvement in cloud 
forecasting. Most optical flow models, including BA96, adopted a coarse-to-fine warping 
scheme for constructing a multi-scale image pyramid and iteratively looping through the layers of 
images for stable outputs of optical flow. However, in practice, the coarse-to-fine heuristic quite 
often does not perform well, particularly for the large movement of objects between two frames. 
The resulting optical flow fails to faithfully represent the real motion (Brox and Malik 2011). As 
fast-moving clouds are common in our observations, we therefore looked into the large-
displacement optical flow (LDOF) (Brox and Malik 2011) and compared it with other classic 
models. 

2.1.2.2 Block-wise Motion Tracking Methods 

A block-matching method tries to search for the best-matching blocks from two consecutive 
images that maximize the pre-defined criterion of similarity. Typically, the criterion of similarity in 
block-matching techniques is based on cross-correlation or least-square errors, and helps find the 
disparity vector between the same reference block across two images within a constrained window. 
Different from the OF methodology that assumes constancy in brightness at the pixel level, block-
matching techniques assume that the reference block retains textural constancy over time. 

Block-matching methods long have been in existence for cloud tracking in satellite imagery 
(Leese et al. 1970; Evans 2006; Rutledge et al. 1991). Most used cross-correlation to find the 
maximum correspondence of regions/blocks between two consecutive image frames (Hamill and 
Nehrkorn 1993). Chow el al. (2011) adopted cross-correlation as the matching criterion to detect 
sparse cloud motion vectors (CMVs) in the images of a  TSI 440A, dividing the original TSI 
image into the blocks of identical size. As a TSI generates an image from the reflection of a 
dome-shaped mirror, the regular blocks in a raw image are distorted and not uniform in real-space. 
Therefore, the image distortion compromises the accuracy of the detected motion vectors, 
especially around the boundary of an image. To resolve this issue, Huang et al. (2011, 2013) 
proposed pre-processing TSI images and transforming the original distorted view to a planar 
view. Thereafter, they located the best-matching blocks based on the normalized cross-correlation 
(NCC) value, and utilized a refining threshold to remove the low accuracy matches, i.e., the low 
NCC value. To mitigate the deformation in t he  cloud and predict the variation in block-wise 
motion, Huang et al. (2013) investigated a multi-frame motion vector tracking and back-tracking, 
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and extrapolated the future movement with the detected motion trend. However, these approaches 
are not computationally efficient and cannot take advantage of the cloud’s information. To address 
these issues, we proposed a new method, termed “cloud-block matching” (CBM), to dynamically 
determine cloud blocks in sky images (Peng et al. 2015), estimate the motion vectors only in 
the blocks of cloud pixels, and thereby assure its efficiency and efficacy via an intelligent 
clustering.  

2.1.2.3 Miscellaneous Other Approaches 

In contrast to those two types of tracking, other tracking approaches may use image registration 
techniques to attain disparity vectors, namely object motion, between two consecutive frames. For 
example, phase correlation is a fast noise-resilient approach that estimates the translational offset 
between two similar frames or sub-frames in the frequency domain (Stone et al. 2001). The 
phase-correlation method, as shown in Huang et al. (2011), cannot discriminate multiple 
movements within the same sub-frame region. More importantly, compared with the block-
matching technique, the phase-correlation technique incurs a higher error rate and is less accurate 
when no obvious cloud texture is available in the designated regions. 

To better address the dynamics of cloud motion, and track the deformation over time, Bernecker et 
al. (2012, 2014) proposed using a non-rigid image registration. They used the well-studied 
diffusion model that is developed by Thirion et al. (1998), based on the optical flow method to 
detect a combined motion vector field with both global translational motions and local variations 
obtained from the diffusion model. Many new deformation models, such as flow and curvature 
models (Sotiras et al. 2013), follow the Thirion method and are widely used in medical image 
registration. 

In addition, the particle image velocimetry (PIV) methodology is used to estimate cloud motions as 
a velocity field. Chu et al. (2013) and Marquez and Coimbra (2013) adopted the MPIV software 
(Mori and Chang 2003) to detect the block-wise cloud velocity field in TSI images. Here, MPIV 
partitions an image into reference blocks and searches for the best matching one based on the 
correspondence criterion of the minimum quadratic difference or the cross-correlation coefficient 
within a nearby window. Afterward, MPIV applies the post-process steps of filtering and 
interpolation to smooth the output velocity vectors. However, MPIV does not perform well when 
an image has discontinuities, such as the artifacts of the shadow-band and the camera’s supporting 
arm on the TSI. To improve the accuracy and aggregate the sparse motion vectors of MPIV, Chu 
et al. (2013) proposed using a k-means clustering to extract two majority motion clusters to 
differentiate stationary clouds and/or clear sky from fast-moving clouds. 

Huang et al. (2012) introduced a hybrid method that incorporates the stable local descriptor or 
local feature in estimating cloud motions. On the top of the block-wise motion, Huang et al. used 
the partial intensity invariant feature descriptor (PIIFD) (Chen et al. 2010) to adjust the motion 
vectors so to enhance the robustness to geometric and photometric variations. Similar to LK81 
motion tracking, Huang’s method can determine sparse motion vectors at those points with a large 
gradient of intensity and correct erroneous block-wise motions. 
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2.1.3 State-of-the-art Approaches and How the System Improved upon Them 

2.1.3.1 Instruments 
 

   
(a) TSI1 (b) TSI2 (c) TSI3 

 
 (d) Google Maps View  

Figure 2-2. (a), (b), and (c) are the pre-processed views of the three TSIs. (d) is the Google Maps view of the three 
TSIs from left to right (camera icon labels) and the 25 solar radiation sensors (red). The distance between TSI1 and 

TSI2 is 2477 meters, and that between TSI2 and TSI3 is 956 meters. 

Most of the material in this subsection also appears in Peng et al. (2015). 

The data used here were obtained from the Long Island Solar Farm (LISF), a 32-MW solar PV 
power plant built by a collaboration between BP Solar, the Long Island Power Authority (LIPA), 
and the Department of Energy. 
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Figure 2-3. Procedure for pre-processing the TSI images. The original image is undistorted from the original dome 
space to the planar space via coordinate transformation. The output image is cropped based on a pre-defined field 

of view range and masked to remove irrelevant areas, such as the supporting arm and the shadow band. 

The LISF, located at the Brookhaven National Laboratory, is currently the largest solar PV power 
plant in the eastern U.S. The cloud tracking system (Figure 2-2) consists of a network of three 
total sky imagers (T SI1, T SI2, and T SI3). Their positions are triangulated to ensure good 
coverage of the sky above the solar farm. T SI1 collects sky images of a region near the solar 
farm. T SI2 is deployed in the middle of the farm to ensure sufficient overlap of its views with 
those of the other two TSIs. T SI3 is located in the northern area of the solar farm. We installed all 
three TSIs at the same altitude and oriented them to ensure that their camera-supporting arms point 
north. Consequently, the supporting arm in each TSI image overlaps with the vertical (y) axis, and 
is aligned toward the north. 

All TSIs uploaded real-time photo streams with a raw resolution of 640 x 480 pixels, and at a 
streaming rate of 10 seconds per frame to a centralized database server. We then applied pre-
processing techniques, as illustrated in Figure 2-3, to un-distort the raw images and remove 
unrelated artifacts, i.e., the shadow band and supporting arm. The primary advantage of pre-
processing the images, as described in Huang et al. (2011), is that the planar view obtained from 
the coordinate transformation of the raw images is more effective for estimating cloud motions. 
In this study, we projected the original coordinates to a flat plane with a given resolution (500 x 
500 pixels) and cropped the planar image using a pre-defined view angle range (zenith range 0◦ − 
60◦) to ensure a field of view (FOV) of approximately 120◦. In addition, because the camera-
supporting arm may not be exactly aligned with the vertical direction in a TSI image, we adjusted 
the orientation in the preprocessing step by rotating the images as necessary. To simplify the 
coordinate transformations between different TSIs, the conditions and specifications of all TSI 
devices were unified. Because each TSI has an identical FOV and resolution, all the pre-processed 
images reside on the same projection plane, wherein pixels are distributed evenly. Finally, we 
applied a pre-calculated mask to remove artifacts such as the supporting arm and shadow band. The 
pre-processed image was then generated, with all irrelevant pixels being set to black (Figure 2-2a-
c). 
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BNL deployed 25 pyranometers in the LISF (Figure 2-2d) to measure the surface solar irradiance. 
These sensors measure the GHI in real-time. The measurements, which are recorded every 10 
seconds, are synchronized with the TSI observations. The variations in zenith angle and the diurnal 
and seasonal patterns are also recorded in the raw GHI measurements, and therefore bias our 
subsequent irradiance forecast models. To mitigate this bias, we normalized each radiation value 
to a clear-sky index kt during model training and testing. Letting 𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡  be the raw GHI measured 
at time t and 𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡  be the corresponding clear-sky estimate, the clear-sky index kt is calculated 
as follows: 

 

𝑘𝑘𝑡𝑡 = 𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡

𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑡𝑡  (2.1) 

where kt nominally ranges from 0 to 1. However, its maximum value can be greater than one due 
to the cloud enhancement caused by diffuse sunlight. The estimated clear-sky value 𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡  at 
time t is obtained from the regression curve that best fits the distribution of historical observations 
(Peng et al. 2013). 

2.1.3.2 State-of-the-art Cloud Tracking Algorithms and Their Limitations 

Among the techniques of tracking the motions of clouds, block matching and optical flow (OF) are 
applied widely to various types of imagery, including ground-based cameras and satellites. 

Block-matching techniques take a collection of pixels (i.e., a block) as a tracking unit, have the 
ability to utilize information from multiple areas, and therefore are sufficiently robust to both image 
noise and brightness variations within images. If the underlying motions consist of only 
translational velocity, and do not involve shearing and stretching, a block-matching approach 
can faithfully represent the true movements of clouds (Huang et al. 2011). However, the majority 
of block-matching approaches employ pre-defined blocks with a fixed size and position, i.e., a 
mesh or grid in an image (Hamill and Nehrkorn 1993; Chow et al. 2011). Consequently, this type 
of block-matching approach is sensitive to the block’s segmentation, and an incorrect segmentation 
in an image can compromise its accuracy. Because non-rigid clouds have a variety of shapes and 
positions that invalidate any pre-defined segmentation, the performance of these block-based 
methods is inconsistent over the streams of images from the camera. Even with the assignment of 
dynamic blocks based on the cloud mask in a sky image (Peng et al. 2014), the performance of 
the block-matching algorithm still deteriorates when multiple pieces of cloud reside within the 
same block. Many recent methods adopt a hierarchical block structure to track block-wise 
motions, and apply post-process filtering and interpolation to the tracking outputs (Huang et al. 
2011; Mori and Chang 2003). Nevertheless, with these approaches, only a limited improvement 
is attained, and it still relies on predefined block segmentation and the tedious tuning of block size 
and position. 

On the other hand, OF techniques address the motion tracking problem at a lower level than does 
block-matching. It enables extraction of the pixel-wise motion through variational methods that 
first define an energy-like objective function, assume the constancy of brightness cross images, and 
obtain the solution via minimizing the objective function. Compared to the block-matching 
approach, the OF model is flexible and can accurately represent complex three-dimensional 
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motions, such as rotation and scaling, at the pixel level (Héas et al. 2007; Héas and Mémin 2008). 
However, it is sensitive to image noise and the variation in brightness, both of which are quite 
common in sky images. Another issue is that for texture-less regions or fast-moving, the accuracy 
of OF may drop significantly due to the lack of information (Brox and Malik 2011). Even with a 
smoothness term (Golemati et al. 2012) or a regional mask (Wood-Bradley et al. 2012) that 
incorporates the surrounding information, current OF approaches still neglect the important 
features, such as the cloud distribution and the multiple cloud layers, each of which has its own 
motion. 

2.1.3.3 Improvements upon the State-of-the-art 

To address the aforementioned issues of optical flow and block-matching, we proposed a new hybrid 
approach that integrates the block-matching (BM) method and the variational OF model, and uses 
the former method to guide/refine the latter one. This new model encompasses three main steps: 
(1) extracting a cloud mask, and generating cloud blocks via bottom-up merging and detecting 
block-wise motions; (2) identifying dominant motion patterns from detected motion vectors; and 
(3) estimating optical flow using our new formulation and refining based on multiple motion filters. 
This design recognizes that the vectors detected by the BM and the OF models are actually 
inter-dependent. For optimal results, they should be integrated into the same framework to ensure 
mutual enhancement. 

All previously existing tracking algorithms use a single camera and are severely limited by the 
resulting two-dimensional view. A single camera cannot give height information nor recover the 
details of multiple layers of cloud that are critical to predicting irradiance at a solar farm. Given 
the low resolution of many sky cameras and severe barrel distortion at image borders, the effective 
field of view is limited (often less than 120º, which is too small to track fast-moving clouds. 
In this project, we created a new tracking algorithm to track clouds in a three-dimensional 
space. Figure 2-4 shows an overview of three-TSI tracking. A piece of cloud at a certain level 
can be projected onto/visualized as three different cloud blocks on the projection planes of the 
three TSIs. Because of the geometric difference among the three TSIs on the ground, the pixel 
coordinates of each cloud block are distinct. Therefore, these cloud blocks can be combined to 
recover their 3-D coordinates. Theoretically, a pair of TSIs should suffice to recover the cloud base 
height (CBH) using a stereography approach (Kassianov et al. 2005; Allmen and Kegelmeyer Jr. 
1996; Nguyen and Kleissl 2014). In this system, we utilize the redundant information from the three-
TSI network to increase the robustness of cloud tracking. 

Furthermore, we increased the range of the state-of-the-art ground-based prediction system from the 
level of one minute to 10-15 minutes, depending on the speed at which the clouds are moving. This 
work includes three components: 1) a robust algorithm to detect the identical piece of cloud 
across different views of the TSI cameras, and recover its height information, and to track clouds 
across different time frames of the same camera and calculate its motion; 2) an intelligent cluster 
algorithm to identify different cloud layers and regimes that are based on information streams from 
multiple TSIs; and 3) a stitching algorithm to expand the field of view by concatenating multiple 
images from different cameras, and to handle the challenges of stitching images based on 
ambiguously defined features, such as cloud heights, borders, shapes, and textures. 
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Figure 2-4. Overview of three-TSI tracking. 

 

2.1.4 Advances to Very Short Range Forecasting 

BNL designed a robust framework to identify the primary cloud layers, to extract the effective 
image features that are relevant to forecast the surface irradiance, and to apply a support vector 
machine (SVM) to predict the final solar irradiance value. Our prediction pipeline contains four 
technical advances: machine learning to detect clouds, a new hybrid model to track clouds, 
multi-TSI integration for tracking in a 3-dimensional space and expanding the field of view of 
cameras for a longer prediction window, and finally, the solar irradiance forecast. Much of this work 
is reported in more detail in Peng et al. (2015). 

2.1.4.1 Machine Learning to Detect Clouds 

Cloud Pixel Identification 

The information in the following two subsections largely comes from section 3 of Peng et al. 
(2015). 

To extract cloud information from images, cloud pixels need to be identified and differentiated 
from non-cloud pixels. The basic concept of cloud detection is to apply a classification methodology 
to identify cloud pixels in sky imagery and to separate the clouds from the sky at the pixel level. 
Beginning with the mask of classified cloud pixels, we aggregate the pixels into appropriate 
regions/blocks to represent pieces of cloud for subsequent tracking. 

However, many challenges are encountered when identifying clouds at the pixel level. With their 
distinct properties, such as different optical depths and brightness variations in sky imagery, clouds 
have various distributions in the red-green-blue (RGB) channels and a wide range of brightness 
levels in different sky scenes or image frames. In particular, certain optically thin clouds may have 
similar textures and colors to those of the background sky pixels, whereas some clouds may 
appear both dark and white within the same sky image. Therefore, it is difficult to identify a 
fixed threshold to separate clouds from sky. For instance, cirrus clouds are often barely 
distinguishable from the clear sky background in TSI images. 
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Moreover, under different weather conditions and at different solar angles, the clouds presented 
on a bitmap image may appear to have different brightness levels and a large range of intensities. 
Therefore, we require a robust, sophisticated methodology to capture the pixel-wise differences or 
the regional textural differences between cloudy and clear regions. From the perspective of 
image processing, it may appear that we could first sharpen edges and boundaries using various 
derivative image filters and then apply image segmentation methods to separate clouds from clear 
pixels based on their boundary pixels, thereby identifying cloud segments. However, these 
methods often fail to segment clouds from the background due to the poorly defined edges of clouds 
in sky images. With the resolution and image quality limitations, a single pixel in a sky image 
may contain both cloud and clear sky. Consequently, a section of visually rigid cloud can appear 
non-rigid and blurry in sky imagery. 

Furthermore, sky imagers face certain instrument-specific challenges in their practical 
deployment in the field and in testing. Because the sky camera adjusts its lens aperture and shutter 
speed in response to the amount of incident illumination, the output images can potentially suffer 
from variations in exposure, and may appear either brighter or darker than the ground-truth image 
that accurately represents the real lighting conditions. 

In this work, we detail how to use a binary classifier to identify cloud versus clear-sky pixels in 
sky imagery. The training datasets for the classifier are generated by manually labeling cloud/sky 
pixels in TSI images. This process requires a considerable amount of human effort and, more 
importantly, may introduce uncertainties and errors into the training datasets that could 
significantly impact the accuracy of traditional classifiers. To overcome this challenge, we 
propose an outlier-aware classifier to train manually labeled pixels in sky images. Moreover, 
because of the many instrument-specific abnormal cases that can be generated from individual 
TSIs, such as over-exposed or under-exposed images, we design a classifier-based pipeline to 
utilize all three TSIs for multi-source image correction to enhance the overall accuracy of cloud 
detection. We also present a technique for aggregating cloud pixels into cloud blocks (Figure 2-5).  

 

 
Figure 2-5. Pipeline for cloud detection using an SVM classifier and multi-source correction. 

 

Supervised Cloud Classifier 

To minimize the influence of possible outliers in the training dataset, BNL chose a support vector 
machine (SVM) (Lindeberg 1993) as a pixel-wise classifier and trained it using two-layer cross-
validation (Kohavi 1995) to reduce over-fitting. An SVM constructs a max-margin hyper-plane to 
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reduce the effect caused by outliers and offers the advantage of being able to handle known 
outlier patterns. In particular, uncertainties and errors introduced during the manual annotation of 
training images are taken into account during SVM optimization. Figure 2-5 shows an example 
of the training and testing process for a cloud classifier. To better describe the characteristics of 
cloud pixels, six features are extracted from the sky images and normalized for use as the SVM 
training dataset: red, green, blue (RGB), and red-blue ratio (RBR) (Huang et al. 2013), all four of 
which are spectral characteristics extracted from the RGB color space, and two features based on 
the neighboring pixels, which are used to mitigate the impact of variations in illumination. In 
detail, we convert the sky images from the original RGB color space to the relative luminance space 
based on the algorithm presented in Stokes et al. (1996), and then apply the Laplacian of Gaussian 
(LoG) spatial filter (Boser et al. 1992) to compute the second derivative in luminance space within a 
fixed-size window (7x7 is used). The LoG value reflects the rapid changes in the illumination 
channel in a certain region and is useful for detecting sharp edges. The final feature used for 
cloud detection is the standard deviation of the luminance channel within a small region around 
each pixel (7x7 is used), representing the pixel’s average difference from its neighbors. Our 
implementation uses the SVM package libsvm (Chang and Lin 2011) with a linear kernel. 

Furthermore, BNL explored the possibility of multi-source abnormality correction using 
synchronized images from all three TSIs. Because the three TSIs are located reasonably close to 
each other, we can reasonably assume that their color representations have statistically similar range 
with regard to the RGB channels. In other words, cloudy/clear pixels in these three digitized color 
channels should have similar histograms across the different TSIs. Therefore, if one TSI 
experiences an exposure issue or abnormal brightness in the RGB color space, we can correct 
it by equalizing the histograms of its RGB channels to those of the two normal TSIs. We first 
generate the cloud masks for all TSIs using the SVM classifier and compute the histograms of 
the RGB channels for cloud and sky pixels separately. By calculating the Euclidean distances 
between the histogram vectors of the three TSIs, we can identify a device as abnormal if its image 
histogram is significantly different from those of the other two devices. We then apply the 
histogram equalization add-on to the output image from the abnormal TSI to adjust its RGB scale 
for cloud and sky pixels. The corrected result can be used for the next round of cloud mask 
generation. In practice, we iterate this procedure three times to extract the cloud mask and 
equalize the RGB histograms of the TSI images (Figure 2-5). 

To evaluate the performance of the proposed supervised classifier and the multi-source correction 
algorithm, we selected various test cases from daily observations corresponding to different 
atmospheric conditions and cloud types and then compared the results with our manually annotated 
images. In this report, we adopt two evaluation metrics to measure the error in cloud classification: 

𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐,𝑐𝑐𝑐𝑐𝑐𝑐
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐,𝑐𝑐𝑐𝑐𝑐𝑐+𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐

 , 𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠+𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠
                      (2.2) 

 

where ACcld and ACsky are the accuracies of cloud and sky pixel classification, respectively. Ncld,cld 
and Nsky,sky denote the pixel counts of correct cloud and sky classifications, respectively, whereas 
Nsky,cld and Ncld,sky indicate the total numbers of sky and cloud pixels, respectively, that are falsely 
recognized by our detector. In Figure 2-6, we show the distinctive patterns of examples of scattered 
clouds, cloudy conditions, overcast conditions, and two multi-layer cases. Compared with the 
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manual classification masks, our pipeline based on the SVM classifier can accurately detect clouds 
(with an accuracy of more than 83.2%), except in the case of multi-layered clouds near the sun’s 
position and very thin clouds. The image area near the sun (“sunspot”) has a higher brightness 
and is difficult to characterize based exclusively on static textural information. Therefore, the 
classifier often falsely labels clear-sky pixels as clouds in that region.  

 
 

 
Figure 2-6. Cloud detection results (row 3) compared to manual annotation (row 2) under different weather/cloud 
conditions. Left to Right in row 1: Scattered cloud, mostly cloudy, overcast, multi-layer, and multi-layer with thin 

cloud. ACcld and ACsky represent the accuracy of the classification results for cloud pixels and sky pixels, 
respectively. 
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Figure 2-7. Results of cloud detection (row 3) compared to manual annotation (row 2) in the presence of device-

specific bias or luminance variations. Left to Right in row 1: red-dominant, green-dominant, over-exposed, under-
exposed, and a different image source. ACcld and ACsky represent the accuracy of the classification results for cloud 

pixels and sky pixels, respectively. 

To validate the cloud detection performance of our method in the case of device errors or variations 
in exposure, we selected four abnormal images of types that are commonly observed in the 
field: red-color dominant, green-color dominant, over-exposed, and under-exposed (the first four 
cases in Figure 2-7). The accuracy of cloud pixel classification in these cases is 86.1% or higher. 
We also applied our classifier to another type of sky imagery configured with a different field of 
view and color scales (the last case in Figure 2-7), which confirmed that our classification 
algorithm is practical and effective. The classification accuracies for cloud and sky pixels in this 
case are 96.6% and 89.7%, respectively. The overall cloud detection performance in all selected 
cases is evaluated in the confusion matrix presented in Table 2-1. We observed our pipeline 
accurately (96.6%) recognizes cloud pixels. 

 

 

Table 2-1. Overall confusion matrix for the cloud detection pipeline applied to the images shown in Figure 2-6 
and Figure 2-7. Left to right in the Table: ACcld and (1 − ACcld) in the first row, and (1 − ACsky) and ACsky in the 

second row. All values are in [%]. 

Cloud Detection Pipeline 
Manual Cloud Sky 
Cloud 96.6% 3.4% 

Sky 10.3% 89.7% 
 

Cloud Block Aggregation 

The cloud pixel distribution detected by supervised classifier is often utilized to aggregate the 
pixels into regions/blocks for motion vector discovery (Peng et al. 2014). The core idea is to 
divide the cloud mask into individual regions. If the texture inside is not appropriate for the 
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similarity criterion defined in motion tracking, then  the region is often divided or merged with 
its neighbors to include more information (Peng et al. 2015). This process significantly improves 
the effectiveness of the best-match finding in block-wise motion detection, and also reduces the 
complexity of computation by removing non-cloud pixels during calculation. Once we successfully 
partition the cloud pixels into cloud blocks, we can track individual cloud blocks and predict their 
future locations. 

2.1.4.2 New Hybrid Model to Track Clouds 

Cloud Block Generation and Matching 
 

 
Figure 2-8. Pipeline of QCBM. 

 

Because the block’s size and position play a vital role in tracking clouds, we devised an effective 
algorithm for block generation and matching, quadtree-based cloud block-matching (QCBM), 
to take into consideration the cloud distribution in sky images. Here, a quadtree recursively 
decomposes images into four equal-sized square sub-images until the criterion of homogeneity is 
met, or the minimum block size is reached, and consequently represents an image in a top-down 
hierarchy with different resolutions (Shusterman and Feder 1994). Such a representation can 
efficiently divide an image into 2-D homogeneous regions/blocks (of similar color, texture, or 
structure), and ease the subsequent tracking process. 

However, regions of low homogeneity, such as the edges of clouds, require excessive decomposition 
to meet the stopping criterion. As a result, a top-down decomposition usually generates cloud 
blocks that are too small to preserve meaningful textural information for motion tracking. To 
overcome this, we introduced a bottom-up scheme to the quadtree construction that starts from all 
nodes at a pre-defined level in the quadtree, identifies all cloud blocks containing cloud pixels 
more than the threshold CF (the fraction of cloud pixels in a block based on the cloud mask 
obtained in prior steps), selectively fills all pixels as clouds in these nodes, and iteratively 
merges homogeneous blocks. 
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a) Fig. 6(d) in Peng et al. (2015) b) SVM Cloud Mask c) 8x8 Filling 

   
d) 16x16 cloud blocks e) 32x32 merged blocks e) 64x64 merged blocks 

Figure 2-9. Quadtree block generation using the example shown in Figure 6 in Peng et al. (2015) with L = 4, K = 2, 
CF = 0.2 and T = 3.  

 

Figure 2-8 shows the steps of the QCBM generation and matching. For simplicity in 
implementation, we pad the sky image to be square with the size of the power of 2. To ensure the 
quality of block-matching, we limit the dimension of the generated cloud blocks to be in a range 
of (2L × 2L, 2L+1 × 2L+1,  ... , 2L+K × 2L+K ), where 2L is the minimum size allowed in generating 
cloud blocks. Under this new approach, there are only K+1 different sizes of cloud blocks. To 
ensure the quality of segmentation near the cloud’s boundary, we first start at one layer lower 
than the finest level, (2L−1) to fill the cloud mask if the cloud fraction inside is beyond CF. 
During the iterative merging step from the level of 2L in our bottom-up scheme, we check the four 
children/sub-blocks of each node: if no less than T=4 children are cloud blocks, all four child 
nodes are eliminated, and the parent node becomes a new (bigger) cloud block. This new cloud 
block will then be filled with cloud pixels and undergoes subsequent merging until the level 
2L+K is reached. Lastly, the quadtree contains different sizes of cloud blocks for matching, as 
shown in Figure 2-9f. We then find the best match for each cloud block to find its block-wise 
movement to the next frame. 

To obtain the optimal matching quality based on the correlation criterion, we choose three layers 
starting from the minimum block size 16×16 for sky imagery (L = 4, K = 2), and then we set 
CF = 0.2, T = 3 to fill and merge the lower level blocks. Figure 2-9 presents the result of 
the original block generation by the QCBM, based on the example in Peng et al. (2015). Figure 
2-9c shows the cloud blocks with the starting size of 8×8 filled with the original cloud mask 
in Figure 2-9b, whereas Figure 2-9d – Figure 2-9f present the iterative merging results of cloud 
blocks with a size from 16×16 to 64×64. We observe that compared with the blocks generated 
by CBM (Figure 2-9a), the blocks by the bottom-up scheme in QCBM (Figure 2-9f) have cleaner 
segmentation around the boundary of clouds and do not contain overlapping regions. 
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More importantly, this QCBM is computationally more efficient. We implemented QCBM, BM, and 
CBM in MATLAB® and ran them on a laptop. Figure 2-10 shows the average run time of three 
different block-matching algorithms under different image resolutions and cloud fractions. As the 
QCBM does not involve the “divide and conquer” scheme in CBM, and eliminates most clear-
sky pixels during the block generation in contrast to BM, its execution speed is significantly faster 
than the others. Especially when an image is large with high resolution, QCBM only incurs a 
marginal increase in the execution time, and always completes the matching process within 10 
seconds. Though the QCBM segments an image into more cloud regions when the fraction of cloud 
in the image increases, the computational speed for its bottom-up scheme does not increase 
significantly and still is faster compared with CBM. 

 
Figure 2-10. Execution time of block-matching algorithms for different image resolutions. CF indicates the cloud 

fraction of a sky image. 

Dominant Cloud Motion Patterns 

To suppress image noise and neglect falsely estimated motion vectors, we identify the dominant 
patterns of cloud motions and use them to refine the entire motion field. First, appropriate image 
pre-processing is necessary to un-distort the TSI images to ensure that the majority of cloud 
motions obtained from the undistorted images are simple and translational. Subsequently, we 
can apply a straightforward clustering (e.g. k-means) to effectively group them, to find dominant 
patterns, and to remove abnormal ones (Chen et al. 2013; Peng et al. 2015). 

However, the clustering approach does not take into consideration the weight of each motion 
vector, i.e., the size of the actual cloud block, and therefore might miss some dominant vectors. In 
this report, we utilize the histogram statistics presented in He and Sun (2012) to extract the N most 
frequent cloud motions in a sky image, and use them to correct and refine the results of estimated 
motions. To accurately determine the significant motion modes for cloud pixels and exclude the 
small-scale motions caused by image noise or sky pixels, we only consider those obvious motion 
vectors that have adequate velocity between two consecutive frames ( ||𝑢𝑢||2 + ||𝑣𝑣||2 > 1 ). 
Thereby, stationary sky pixels or slow-moving clouds are ignored in calculating dominant 
motions. 
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In our implementation, we first produce a dense motion field based on the motion vectors detected 
in previous block matching. Each cloud pixel acquires the associated motion vector from the cloud 
block on which it resides. Thereafter, we create a 10x10 2-D histogram for the motion vectors of 
all cloud pixels. This design considers the size of a cloud block, and a large block has many pixels, 
each of which contributes to the count, namely the weight of the shared block-wise motion vectors 
to the histogram. Then we pick the N most-frequent motion modes, and group the pixel-wise 
motion vectors into N groups. For each motion group, we select the median motion vector as the 
dominant motion pattern, and thereby generate a collection of dominant motion vectors. Finally, 
we refine all non-zero motion vectors by resetting their values to the closest dominant motion 
vectors. Here we use (𝑢𝑢� , 𝑣𝑣�) as the reference vector to guide the refinement of optical flow in the 
next section.  

Context-Aware Variational Model and Its Refinement 

The original OF models lack contextual information and are agnostic to existing domain 
knowledge. Consequently, these OF models often assign erroneous flow vectors to cloud pixels 
and are sensitive to image noise. To cope with those issues and utilize the information of motion 
layers and cloud distribution, we build a new OF model. First, we revise the energy-like objective 
to assimilate the aforementioned dominant motion patterns, and to use them to create a context 
for calculating the optical flow at each cloud pixel. However, a motion field obtained only from the 
straightforward process of energy minimization still suffers those issues. Previously, the general 
practice was to apply post-processing techniques, such as median filtering (Wedel et al. 2009) or 
signal-noise ratio threshold (Mori and Chang 2003) to mitigate the impact of image noise and 
remove the outliers. Therefore, we also follow the practice and apply three filters thereafter to 
further assimilate cloud information, utilize dominant motion patterns, and remove noise in the 
motion field. Given the facts that one iteration is not sufficient to correct the motion field and that 
the reference vector still needs to be refined to absorb new information to closely represent the 
current motion field, we design an iterative algorithm to generate and optimize the dense flow field 
and to update the subsequent reference motion vectors. This design recognizes that the vectors 
detected by the BM and the OF models are actually inter-dependent. For the optimal results, they 
should be integrated into the same framework to ensure mutual enhancement. 

A sky filter processes the clear sky pixels that are identified by velocity threshold. We assume that 
the clear sky regions in images do not move between consecutive frames, and set the motions of 
all sky pixels acquiring small-scale motions in the previous step to be zero in both the x and y 
directions. It eliminates the small motion vectors caused by image noise and avoids accumulating 
errors in the iterative minimization step. It is noteworthy that instead of considering all clear sky 
pixels, we filter out only the ones with a small movement based on the threshold criterion Tsky 
because cloud pixels in thin clouds or the images containing a high level of image noise have a 
high probability of being falsely categorized into the class of clear sky. Consequently, relying 
on cloud mask only potentially neglects these special cases, and accidentally removes the 
prominent motions of these mis-classified pixels. 

A dominant motion filter is designed to identify the outliers with reference to the dominant motion 
patterns. If a motion vector at position (x, y) has significant deviations from all dominant motion 
patterns (Ω), then we identify it as an outlier, i.e., if a motion vector meets the following condition, 
we will remove it. 
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{(ux,y, vx,y)|(ux,y − ui)2 + (vx,y − vi)2 > ε2, ∀(ui, vi) ∈ Ω}

 (2.3) 

This filter significantly helps to refine the motion field for the next round of minimization and 
to update the reference motion field. 

A weighted median filter is widely adopted to smooth and de-noise the motion field in the post-
processing step (Sun et al. 2014). Our model employs this filter to update the  reference 
(auxiliary) motion field (û, v̂). The weighted median filter can be calculated as follows: 

 

(2.4) 
 

where Γ(x, y) is the set of (x, y)’s neighborhood pixels (x, y) within a pre-defined window (e.g., 5x5) 
centered at (x,y), and 𝑤𝑤𝑥𝑥,𝑦𝑦

𝑥𝑥′𝑦𝑦′ is the weight of the affinity (similarity) between two pixels. In our 
implementation, we approximate its calculation with the color difference in an image:  

                                   (2.5) 

F represents the color image with the RGB channels. To compute w efficiently between each 
pair of pixels, we adopt the joint-histogram weighted median filter (JointWMF; Zhang et al. 
2014) to reduce the execution time of updating (û, v̂). Compared with the weighted median 
calculation in Sun et al. (2014), the JointWMF significantly speeds up the running time by more 
than a factor of 10 while still preserving the quality of estimation (Zhang et al. 2014). Afterward, 
we pass the updated (û, v̂) for the next round of the iterative minimization of E(u, v). We iterate 
the process three times to produce the final output of the dense optical flow field. 

2.1.4.3 Multi-TSI Integration for Tracking Clouds in Three-Dimensional space and Expanding Field 
of View 

Much of the material in this subsection comes from section 4 of Peng et al. (2015). The reader is 
referred to that publication for equation development. 

Assumptions of Consistency of Projected Images Across TSIs 

The vertical height and horizontal expansion of clouds vary considerably among different types 
of clouds. Therefore, the projected size of a cloud observed by ground-based cameras depends 
strongly on the cloud type, the location of each camera, the field of view, and the solar zenith 
angle. With no loss of generality, we assume that the dimensions of the projected views of the cloud 
base in images from multiple TSIs are identical to ensure the suitability and mathematical 
correctness of our calculations. In practice, our cloud tracking system does not enforce these strong 
assumptions; however, it is sufficiently robust to tolerate the differences between projected images 
while still being able to identify the same object in different images based on the values of the 
temporal and spatial correlations. 
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We further simplify the cloud tracking task by adopting two assumptions: a) clouds exhibit only 
planar movement, without any vertical motion, and b) the velocity remains constant within our 
forecasting time window. Moreover, all undistorted images reside on the same projection plane, with 
the identical fields of view and spatial resolutions. 

Therefore, to ensure the uniformity of the TSI images and the consistency of the cloud 
movements without any loss of generality, we make several additional assumptions about our three-
TSI system. First, a cloud block and its counterparts in other TSI images have the same 
dimensions, without scaling or shearing. Second, the mapping from the displacement vector to the 
cloud base height (CBH) is independent of time because the mapping functions f and g are fixed 
and determined only by the locations of the TSIs. Third, a cloud block maintains a consistent size 
over a short time. Because a piece of cloud is assumed to exhibit only planar movement, all its 
cloud blocks residing on the projection plane must be of the same size at different timestamps. 
Finally, the fourth assumption is that a cloud block registered by one TSI and its counterparts at 
the other TSIs have the same motion vector. 

Based on these assumptions, we designed a novel tracking system utilizing all three TSI devices 
for a series of consecutive timestamps. In total, nine images are used to extract two types of shift 
vectors at the pixel level: 1) the displacement vectors between TSI views (CBH) and 2) the motion 
vectors between consecutive frames from one TSI (planar motion). An intuitive example is 
illustrated in Figure 2-11. After identifying a cloud block segment in an image from TSIi at time t, 
our goal is to find its “best” matches in the other eight images and use these matches to explicitly 
calculate its motion and displacement vectors. The motion vectors of the nine cloud blocks should 
be identical because they represent the same cloud with steady movements, so we simplify the 
tracking problem by setting the cloud block velocity vt = vt+1 during block matching. Moreover, 
we assume that the cloud base height remains consistent within a short tracking window. As a 
result, the estimated CBH h derived from the “best” matches must satisfy ht+1 = ht, which is also 
essentially equivalent to saying that the pixel-wise displacement vector di,j,t+1 = di,j,t. To identify 
the best estimates of vt and di,j,t, the next step is to define a criterion to match multiple cloud blocks 
in different images. 

The Common Similarity Function for Tracking Clouds among Multiple Cameras and Sequence of 
Image Frames 

For this system we have designed an algorithm to simultaneously incorporate both spatial and 
temporal correlations to improve the accuracy of the block-matching methodology. We proposed 
formulating the tracking problem as the maximization of a similarity function in which these two 
types of correlation are summed. In detail, this function consists of two components: 1) the sum 
of the similarity among different time frames for each TSI, and 2) the sum of similarity between any 
pair of TSIs at a given timestamp. Given a cloud block centered at c on T SI1 at time t, the similarity 
function, φ, can be calculated by summing all similarity values, and the motion vector and one 
displacement vector are denoted by vt and d1,2,t respectively. Note that we include only the 
displacement vector from T SI1  to T SI2  in the similarity calculation. Each pixel value lies in the 
range (0, 255). The normalized cross-correlation (NCC) between two image blocks of the same size 
and dimensions, is widely used in motion estimation because of its simplicity and robustness to 
noise and changes in intensity. Given the definition of the similarity function φ, our goal is to 
search for a combination of (d1,2,t , vt ) that optimizes its value. The most straightforward method is 
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searching all combinations and finding the (dm1,2,t , vmt) that maximizes the φ score (Eq. 10 in Peng 
et al. 2015). 

 

 
Figure 2-11. Matching cloud blocks in nine images. The cloud block of interest is indicated in yellow, red, and green 

boxes on the TSI1, TSI2, TSI3 images, respectively. The movement of the cloud block that is detected between two 
consecutive frames is indicated by a dotted arrow and labeled as v. The displacement vector between a pair of TSIs 

at the same timestamp is represented by a solid arrow and labeled as d. 

However, the maximum of φ is only the correct result if 1) the cloud block is located in 
the middle of the FOV and visible in all nine images, 2) the image quality is sufficient to 
accurately display the cloud texture within the block, and 3) the cloud inside the block and 
its counterparts in the images from the other TSIs are of similar shape and size, even from 
different angles of view. In general, several difficulties prevent us from attaining the 
optimal solution to maximize φ as described below. In our previous work (Huang et al. 
2013), the block tracking near the image boundary was found to be inaccurate because of the loss 
of information. Only the blocks that are at least a certain distance from the boundary can possibly 
be matched using the NCC value. Moreover, because cloud blocks have various sizes and textures, 
the tracking performance achieved by applying NCC may vary. In practice, even for cloud blocks 
that are distributed on the same layer and exhibit identical movement, their optimal solutions to 
Eq. 10 in Peng et al. (2015) may be similar, but not identical. Another difficulty encountered in 
cloud-block tracking using TSI images is that some information is missing due to artifacts from 
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the TSI. Blank pixels (marked as black in the TSI images) significantly impact block-matching 
because the maximization of NCC always favors blocks with lower loss of information. Furthermore, 
noisy pixels or variations in image brightness may cause instabilities in calculating the NCC score 
and thereby influence the cloud-tracking performance. Consequently, the maximum value of φ 
does not always guarantee the best matches among nine images.  

As discussed in previously, static features are not effective for differentiating cloud pixels near the 
sunspot. We propose incorporating the dynamic information from cloud tracking to enhance cloud 
detection in the sunspot region. To mitigate the influence of false-positive pixels around the 
sunspot, we apply a pre-defined sunspot mask (window) and acquire the motion vector vt

m by 
solving Eq. 10 in Peng et al. (2015) for each cloud block within this range. If the magnitude of vt

m 
for a cloud block is close to 0, then in the subsequent cloud-layer determination step, we convert 
the relevant cloud pixels within this block into clear sky pixels. 

Multi-layer Detection and View Stitching 

To locate the best match and find the optimal solution of the similarity function φ, we introduce 
clustering and multi-layer aggregation during cloud tracking to utilize all cloud blocks in the visible 
range. Instead of considering only the maximum of φ, we propose tracking all possible (d1,2,t, vt ) 
combinations as potential solutions. In practice, we store a combination for a cloud block only if 
each NCC score in the φ calculation is above a certain threshold (here, we use 0.5). Therefore, a 
single block may have multiple motion and displacement vectors. Our goal is to obtain L, a 
collection of multiple potential (d1,2,t, vt ) combinations detected for all cloud blocks: 

 
L = {(d1,2,t , vt )|NCC∗ ≥ 0.5, c ∈ C} (2.6) 

 

As Note that NCC∗ refers to any NCC calculation listed in the φ equation. C denotes the set of 
all cloud blocks found in the cloud detection pipeline. 

Based on L, we apply the k-means clustering (Singh and Glennen 2005) technique to generate 
layers of clouds. In our system, two layers at most are considered and aggregated. Hence, binary 
clustering is used to split L into two categories. If we use the clustering result to represent cloud 
layers, then the centroid of a cluster, (d1,2,t, vt), represents the primary height and motion of this 
layer. Thereafter, we can group all cloud blocks into two layers/clusters based on the Euclidean 
distance between the reference solution (d1,2,t, vt) and the centroids. The entire cloud block set C 
is then divided into two layers, C1 and C2, each of which contains multiple cloud blocks that 
should have similar motions and heights. To generate more accurate and robust information 
concerning the cloud layers, we assume that cloud blocks on the same layer possess only one major 
planar motion vector and one CBH. Similar to the form of the centroid in clustering, we define the 
wind field (WF), (d1,2,t, vt), as the unique combination of the displacement and motion vectors 
corresponding to a given cloud layer. We calculate this combination of vectors by maximizing the 
summation of φ over all cloud blocks on the same layer. 

If two wind fields extracted from two clusters are sufficiently similar to each other, then we treat 
them as a single cloud layer in which c can be drawn from the entire cloud block set C. When 



The Sun4Cast Solar Power Forecasting System   

 

44 
 

the Euclidean distance between two motion vectors is less than two pixels, or their height difference 
is less than 500 meters, we consider these two wind fields to belong to a single layer. To 
further improve tracking performance and reduce computational complexity, all generated wind 
fields are stored as historical layers. When searching for a reasonable solution set, this historical 
reference is used to refine the possible range of motion vectors and height levels. This approach 
accelerates the search procedure and increases the system’s robustness in coping with noise. 

An example with two (layers of) wind fields detected is shown in Figure 2-12 and Figure 2-13. 
Nine images in three consecutive frames from timestamp t to t + 2 are used to extract potential 
solutions. In Figure 2-13, the displacement vectors of T SI2 → T SI3 and T SI2 → T SI1 are shown in 
blue and green respectively, whereas the cloud motions are shown in red. Figure 2-13a-c 
confirms that to maximize φ for each individual block does not always guarantee finding the best 
matches. We observe that cloud blocks near the shadow band and supporting arm (black area) 
exhibit obvious errors due to the information loss caused by blank pixels. However, after 
clustering and aggregating, the cloud blocks can be categorized into two layers, WF1 = (1201m, 
10px, −6px) and WF2 = (4184m, 7px, −2px). As shown in Figure 2-14d-f, these two layers are 
indicated by red and green boxes, respectively, and offer more stable estimations of displacement 
and motion than do the individual cloud blocks. 

We also present another example of a single WF detected from the nine input images shown in 
Figure 2-11. In Figure 2-14a-c, several combinations of height and motion that achieve the 
maximum value of ϕ are deemed outliers and marked with green rectangles. Running the clustering 
algorithm identified two wind fields: WF1 = (4357m, 8px, 8px), and WF2 = (2098m, 8px, 9px). 
However, these two layers are very similar to each other given their similar motion vectors. Thus, 
we aggregated all blocks into one layer, as indicated by the red boxes in Figure 2-14d-f. The output 
WFsingle is then represented as a single tuple (2130m, 8px, 9px) which is less sensitive to the 
boundary or noisy cases. 
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(a) TSI1t (b) TSI2t (c) TSI3t 

   
(d) TSI1t+1 (e) TSI2t+1 (f) TSI3t+1 

  

(i) TSI3t+2

 
(g) TSI1t+2 (h) TSI2t+2  

Figure 2-12. Example of cloud tracking on nine images. 
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Figure 2-13. Determination of two cloud layers corresponding to the images shown in Figure 2-12. (a), (b), and (c) 
show the matching results for (dm

1,2,t ,vm
t ). The estimated heights are labeled in (b). (d), (e), and (f) are marked with 

blocks indicating the two wind fields (red and green). The arrows in the images from TSI1 and TSI3 represent 
motions, whereas the arrows in the images corresponding to TSI2 represent the TSI2 → TSI1 (green) and TSI2 → 

TSI3 (blue) displacement vectors. 

 

After determining the cloud layers, multiple TSI views can be stitched together block by block. We 
select T SI2 as the origin/center of this combined view because it is located in the middle. The 
pixels of a cloud block from T SI1 and T SI3 can then be mapped to T SI2’s coordinate system 
through pixel-wise shifts of the forms T SI1 → T SI2 and T SI3 → T SI2 which are identical to the 
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extracted displacement vectors d1,2,t and d1,3,t. Thus, given the estimated heights of the cloud 
layers, all cloud blocks from T SI1 and T SI3 are placed and stitched into the aggregated view from 
all three TSIs. An example of such a stitched view wherein all blocks belong to a single layer is 
shown in Figure 2-14g. For a case with more than one layer, the stitched view is generated by 
stitching layers one by one, i.e., from a higher altitude layer to a lower one, because low-altitude 
clouds can overlay those at higher altitudes. Consequently, the output view should be similar to 
Figure 2 -16g. The black areas where gaps still exist are marked as blank, and we fill them in with 
the default sky color for visualization. The default value is calculated by averaging all clear-sky 
pixels across multiple TSI views.  

2.1.4.4 Short-term Solar Forecasts 

Much of the material in this section is drawn from section 5 of Peng et al. (2015). 

In this section, we describe the methods for extracting image features and the different 
irradiance models used to forecast solar irradiance. First, given the locations of the 25 pyranometers, 
we need to identify the relevant pixels on the TSI images that are correlated with the surface 
irradiance fluctuations at these locations. Since the clouds located between the sun and the solar 
panels are the primary cause of ramps in irradiance, the basic concept of irradiance forecasting is 
to predict whether clouds will block the sunlight at a specified time. As shown in Figure 2-4, 
the device’s projection on the sky image corresponds to the intersection of the projected plane (i.e., 
the image plane) with a line drawn from the sun to the pyranometer. If a cloud is located in the 
path of the sunlight traveling to the pyranometer, then its projected position on the image plane 
must overlap with the device’s projection. Furthermore, we define the corresponding pixel at 
the projected position in the stitched view of the three TSIs as a “sun-blocking” pixel. Because 
this pixel is correlated with the amount of direct sunlight cast on a pyranometer, our goal is then to 
extract the image features of this pixel, which will subsequently serve as the input to the irradiance 
model. As shown in Figure 2-4, the position of the sun-blocking pixel depends on the angle of the 
Sun, the geographical location of the pyranometer, and the height of the cloud that is blocking the 
direct sunlight. Using these inputs, we can easily calculate the sun-blocking pixel for each of the 
25 pyranometers, as shown in Figure 2-15a-b. 

To predict which pixels will become sun-blocking pixels in the future, we apply a backtracking 
method to the current stitched view. In this processing step, the backtracking is guided by the 
motion vectors detected at previous timestamps: given that the cloud motion in a particular layer 
is vt where t is the current timestamp, the pixel ĉt that will potentially become a sun-blocking pixel 
ct+N in the Nth future time frame (at time t + N) is then calculated by moving ct+N  in the 
direction opposite to the motion vector ĉt ← ct+N − vt ×N. Here, we assume that the motion vector 
remains unchanged between t and t + N and that the pixel at ĉt will become ct+N  and block the 
sunlight after N time frames, provided that it contains a cloud at that time. If multiple layers of 
clouds move to this pixel location, then the lower-altitude cloud pixel is preferred because it will 
block the higher-altitude one. 

  



The Sun4Cast Solar Power Forecasting System   

 

48 
 

 
 

 
Figure 2-14. The single layer detected from the nine images shown in Figure 2-11. (a), (b),and (c) show the tracking 
results for (dm

1,2,t,vm
t ). The regions marked with green boxes in (b) display obvious bias due to the boundary effect. 

(d), (e), and (f) show the single-layer field, (ht, vx
t, vx

t) = (2130 m, 8 px, 9 px) marked in red. 
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(a) h=1000 at 2:00PM (b) h=3000 at 9:00AM 
Figure 2-15. Examples of the locations of the sun-blocking pixels (blue crosses) for the 25 pyranometers in the 

stitched multi-TSI view. 

As expected, the effectiveness identification of the sun-blocking pixel requires an accurate 
estimation of the motion vectors of each layer. Any error in this information will further accumulate 
in subsequent steps. To mitigate this effect, we have devised two strategies to be implemented in 
the feature extraction step. First, instead of focusing on a single sun-blocking pixel, we considered 
the 7x7 sun-blocking window surrounding this pixel. This enables us to reduce the risk of false 
prediction, and more importantly, to include more features from the neighboring pixels. Second, 
we use 23 significant features to describe the spectral variation inside the window at the current 
time t and the predicted time t + N. Among these features, nine are the average, minimum, and 
maximum values of the RGB channels of the window surrounding ct , which describe the spectral 
properties of the current observation. Similarly, we choose nine additional features from the sub-
blocking window centered at ĉt , which represent the estimated properties. The remaining five 
features, are the RBR of ct (RBRt ) and ĉt (RB̂Rt ), the cloud fraction at time t, and the ground-truth 
irradiance values at the current time t (kt ) and one-minute earlier, at t − 6 (kt−6). The RBR at both 
timestamps are used because this quantity shows a noticeable spectral difference between cloud 
and sky (Morris 2005). The cloud fraction represents the overall cloud conditions. The two 
remaining features, the ground-truth irradiance values at t and t − 6, enhance the performance for 
a short forecasting window because they incorporate persistent observations. Here, the forecasting 
problem is formulated as k̂t+N = f (xt ), where k̂t+N  represents the predicted irradiance at t + N and 
xt  is the vector of the 23 extracted features. 

To examine the predictive capabilities of the selected features, we explore four different irradiance 
models that use a subset or all of these features to generate a regular linear regression or more 
complicated non-linear relationships f (xt ): 1) linear RBR delta (linearδ), 2) an ordinary linear 
regression model  (linearall),, 3) support vector regression (SVR) (Drucker et al. 1997) based on a 
linear kernel (SVRlinear), and 4) SVR with a non-linear kernel (SVRrfb). For comparison, we use 
the persistence model as the baseline model, i.e., the radiation shift, RShift, which directly uses the 
current observation as the forecasting result. 

In addition, we introduce one regression model that depends only on multiple irradiance values and 
is used to further validate image features for prediction capability in our comparison studies. 
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First, we simply extend the persistence model by incorporating a linear regularization term based on 
the information from the sun-blocking pixel. Our preliminary study of motion vectors (Huang et 
al. 2013) indicates that the RBR of a sun-blocking pixel is a useful indicator of the cloud 
transmittance at this pixel. The linear RBR delta model, denoted by linearδ , is a weighted 
difference between the two. 

However, the ordinary model is sensitive to noise or outliers and suffers from the overfitting 
problem. To overcome these shortcomings, we apply the SVR (Smola and Schölkopf 2004), an 
extension of the SVM approach, for regression.  

2.1.5 Initial evaluations 

Much of the material from this section comes from section 6 of Peng et al. (2015). 

2.1.5.1 Experimental Dataset 

We chose the period from 13 May to 3 June 2013, encompassing various weather conditions, to 
evaluate the performance of 1-min to 15-min-ahead 3-D cloud tracking and irradiance 
forecasting. To guarantee consistent cloud visibility and zenith angle, we filtered out records whose 
timestamps were not between 9:00 and 16:00 Eastern Standard Time (EST). Our experimental 
dataset contains 9963x3 images from three TSIs that collect data simultaneously and the 
synchronized 9963x25 GHI records from 25 ground-based pyranometers. Furthermore, we divided 
the full dataset into four categories based on weather and cloud conditions: single-layer clouds (Ds), 
multi-layer clouds (Dm), overcast or extremely cloudy (Do), and a mixture thereof (Dmix). Ds 
corresponds to a typical low-altitude cloud that is commonly observed on the east coast of the 
United States. This type of low cloud typically appears in a single layer and remains in the field of 
view of a TSI for several minutes at most. Given its quick movement in and out of the FOV of 
a TSI, Ds  is an ideal dataset for demonstrating the capability of the new tracking system to capture 
rapid cloud motion and evolution. Dm  is a collection of cases wherein multiple layers of clouds 
were observed within the FOV of all TSIs. Hence, the tracking and forecasting performance with 
respect to Dm is expected to reflect the ability of the system to categorize and track multiple wind 
fields. Do corresponds to cloudy and overcast cases. Based on our observations, the textural 
patterns of the images acquired in extremely cloudy conditions are not obvious and are hence 
difficult to utilize for block-matching and the extraction of image features. Therefore, we 
designed Do to demonstrate the sensitivity of this new tracking system when applied to TSI images 
with less obvious patterns. Dmix contains the remaining cases, including sunny, partially cloudy, and 
thin-layer conditions. The cloud tracking and irradiance forecasting performance with respect to 
Dmix reflects the system’s average performance for a mixture of cloud conditions. Table 2-2 
describes the details of all subsets. 

2.1.5.2 Evaluation Metrics and Validation Method 

As discussed above, the prediction of the sun-blocking pixels for the 25 pyranometers is 
performed based on cloud movements in a particular cloud layer. When a cloud moves too 
rapidly, or the forecasting interval is too long, one or more positions may be outside of the 
FOV of our TSI. In this case, we cannot extract any features for modeling and predicting 
irradiance. To quantify the tracking capability for sun-blocking pixels within our stitched view, 
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we define a metric named the successful tracking index (ST I), which is the percentage of 
instances in the designated dataset for which all 25 sun-blocking pixels can be included in the 
FOV of the stitched image for a particular forecasting horizon.  

We also use the mean absolute error (MAE) and root-mean-square-error (RMSE) as evaluation 
metrics. In our experiment, the MAE measures the average accuracy of cloud tracking, whereas 
the RMSE assigns greater penalties to large errors, such as false estimation of a cloud’s presence. 
To avoid bias and control the over-fitting problem, we introduce the cross-validation technique 
(Kohavi 1995) into the modeling and evaluate the forecasting performance across all 25 stations. 
In the cross-validation, the original dataset is evenly divided into several independent subsets, 
and the average performance of the predictive model measured across these subsets. In this 
experiment, five-fold cross-validation (Ncv = 5) is applied, the five folds (four for training and 
one for testing) randomly generated. Additionally, since 25 simultaneous, location-dependent 
ground measurements are available, we can verify a forecast by comparing it with the observations 
from a different measurement station, s, at time t. Hence, the final error metrics can be formulated 
as the average performance of all five-fold tests across all 25 stations. The MAE and RMSE scores 
are calculated based on the normalized GHI values. 

To evaluate the effectiveness of the image features extracted from our multi-layer cloud detection 
and tracking system, we created a new reference model, SV Rk, for comparison. This model also 
uses SVR with only radiation observations as inputs and excludes all image-based features, in 
contrast to our proposed forecast model SV Rrbf . In greater detail, SV Rrbf and SV Rk share the same 
radial basis function as their SVR kernel and use identical parameter settings for both training 
and testing. The difference is that SV Rk  uses only the l (here, we choose l = 6) most recent 
radiation values, i.e., kt−5, kt−4...kt , as inputs. We apply both SV Rrbf  and SV Rk to generate real-
time irradiance predictions to validate the effectiveness of the image features in producing short-
term solar forecasts. 

2.1.5.3 Model Performance 

Figure 2-17 shows the 1-15 minute ST I scores of the entire dataset (bars) and the four subsets 
(lines). We observe that the ST I scores for Ds and Dm decrease dramatically beginning with the 
nine-minute forecast, whereas the performance for the other two subsets remain relatively stable 
between one and fifteen minutes. Consequently, the success ratio for the entire dataset overall 
also decreases as the time horizon increases. The ST I decreases for longer forecast horizons (longer 
than ten minutes) because of fast-moving clouds. According to our observations from the TSI 
images, on the east coast of United States, these clouds are mostly distributed in a single layer 
with a cloud base height below 3000 meters. They often have a high velocity, as detected at the pixel 
level, and exhibit rapid formation/dissipation within a 10-minute window. Thus, given the limited 
visible range and TSI resolution, 3-D cloud tracking can capture the majority of low-layer clouds for 
only up to nine minutes. Beginning at the 10-minute horizon, low clouds are highly likely to move 
out of the field of our stitched view. This cloud property, combined with the physical limitations 
of the tracking TSIs is consistent with the significant decrease in the ST I of Ds at the nine-minute 
horizon, reaching almost 0 at the ten-minute horizon. Similarly, the ST I of Dm decreases after 
nine minutes. However, since more than one layer is present in Dm, the tracking results benefit 
from partial estimations from the higher layers which tend to be more stable and have slower pixel-
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wise motion vectors. For Do and Dmix, most cases correspond to high-layer clouds or mixed 
conditions and are therefore suitable for ten-minute forecasts and beyond. 

We evaluated the irradiance forecasting performance over the entire dataset based on the metrics 
of the MAE and RMSE scores, and the results are presented in Table 2-3 and Table 2-4. We 
excluded the out-of-FOV data points and only trained and tested the irradiance models based on the 
remaining available data subset. During model training, we discovered that when ST I is low, the 
models tend to overfit the data. One reason for this behavior is that an excess of out-of-FOV 
records leads to a lack of observations in the training folds. For instance, if we train the model using 
Ds for forecast horizons longer than ten minutes, we barely have enough training records to 
generate the forecasting model. Another reason is that we may introduce bias into the forecasting 
models. Since rapidly changing cases, such as those with low-altitude clouds, are excluded for long 
forecasting horizons, the forecasting models will place more weight on the “easy” cases, such as 
those corresponding to sunny and overcast conditions. Hence, if too many records in an 
experimental dataset are out of the FOV, or the ST I value is below a certain threshold (here, 60%), 
we mark the result with an asterisk to indicate a partial forecast and a potential over-fitting 
problem. When all records are out of the FOV (ST I = 0), we denote this scenario with ’-’, 
indicating that no forecasting result is available (see Table 2-4). 

Table 2-2. Descriptions of four subsets with various cloud and weather conditions. image#: number of TSI images, 
k#: number of GHI measurements, c f : estimated range of cloud fractions in the sky images, c fσ : mean and 

standard deviation of the cloud fraction, k: range of the clear-sky index. kσ : the mean and standard deviation of k, 
exp: observed (ab)normal condition of the TSI images, CBHest : cloud height range, vest : cloud motion in image, 

W F#: number of cloud layers, zenith: solar zenith range, condition: cloud conditions. 

Subset Ds Dm Do Dmix 
image# 2517x3 2520x3 2406x3 2520x3 
k# 2517x25 2520x25 2406x25 2520x25 
cf [0.07,0.94] [0.03,0.94] [0.94,0.95] [0,0.95] 
c fσ 0.71 ± 0.25 0.70 ± 0.27 0.94 ± 0.01 0.50 ± 0.35 
k [0.11,1] [0.06,1] [0.17,1] [0.11,1] 
kσ 0.46. ± 0.22 0.57 ± 0.27 0.63 ± 0.21 0.81 ± 0.23 
exp normal underexposed normal green-dominant 
W F# 1 2 2 2 
CBHest (m) [1590,2960] [1890, 4420] [6020,15730] [440 12330] 
vest (px/min) [36,60] [6,36] [0,54] [0,60] 
zenith [40◦, 57◦] [42◦, 58◦] [41◦, 56◦] [41◦, 57◦] 
condition low,scattered multi-layer overcast Mixture 

 
 

Table 2-3. MAE and RMSE metrics for 1-minute and 5-minute irradiance forecasts. The subscript of each score 
indicates the subset type used to train and test the model. The subscript “avg” indicates the average performance on 

the entire dataset. 

Dataset 
 
MAEs MAEm 
MAEo 

Rshi f t linearδ linearall SV Rlinear SV RRBF 
1 m 5 m 1 m 5 m 1 m 5 m 1 m 5 m 1 m 5 m 
0.16 0.20 0.14 0.20 0.11 0.16 0.10 0.16 0.09 0.14 
0.16 0.19 0.14 0.19 0.11 0.15 0.10 0.14 0.08 0.13 
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MAEmix 
MAEavg 

0.04 0.08 0.04 0.08 0.03 0.07 0.03 0.07 0.03 0.06 
0.11 0.16 0.12 0.17 0.09 0.13 0.07 0.12 0.06 0.09 
0.12 0.17 0.12 0.17 0.10 0.16 0.09 0.15 0.07 0.12 

RMSEs 0.23 0.27 0.20 0.26 0.15 0.20 0.15 0.20 0.14 0.18 
RMSEm 0.26 0.29 0.21 0.28 0.15 0.20 0.15 0.21 0.14 0.20 
RMSEo 0.06 0.11 0.06 0.11 0.05 0.09 0.05 0.09 0.04 0.08 
RMSEmix 0.23 0.29 0.22 0.26 0.15 0.20 0.17 0.21 0.13 0.18 
RMSEavg 0.23 0.27 0.21 0.26 0.15 0.21 0.17 0.22 0.13 0.19 

 
Table 2-4. MAE and RMSE metrics for 10-minute and 15-minute irradiance forecasts. ‘-’ indicates that no forecast 
output is available due to cloud tracking failure. ‘*’ indicates an incomplete dataset that has a low STI value or an 

average performance influenced by incomplete/empty subsets. 

Dataset 
 
MAEs MAEm 
MAEo 
MAEmix 
MAEavg 

Rshi f t linearδ linearall SV Rlinear SV RRBF 
10 m 15 m 10 m 15 m 10 m 15 m 10 m 15 m 10 m 15 m 
0.27* - 0.25* - 0.24* - 0.16* - 0.13* - 
0.20 0.21* 0.20 0.21* 0.16 0.18* 0.15 0.17* 0.13 0.15* 
0.09 0.11 0.09 0.11 0.08 0.10 0.08 0.09 0.07 0.08 
0.18 0.19 0.20 0.20 0.14 0.16 0.12 0.13 0.09 0.11 
0.17* 0.17* 0.18* 0.17* 0.17* 0.16* 0.15* 0.15* 0.12* 0.11* 

RMSEs 0.33* - 0.30* - 0.36* - 0.21* - 0.18* - 
RMSEm 0.30 0.30* 0.29 0.30* 0.21 0.23* 0.22 0.24* 0.21 0.23* 
RMSEo 0.12 0.15 0.12 0.15 0.11 0.12 0.11 0.13 0.10 0.11 
RMSEmix 0.31 0.32 0.30 0.31 0.21 0.22 0.23 0.24 0.20 0.21 
RMSEavg 0.29* 0.29* 0.28* 0.28* 0.22* 0.22* 0.23* 0.23* 0.21* 0.20* 

 

In Figure 2-16a-b we evaluate the effectiveness of the four forecasting models by comparing 
them with the persistent model for one- to fifteen-minute forecasts. To ensure that the sun-
blocking pixels are contained within the stitched view for the majority of the training and test cases 
over the full forecast horizons, we use the experimental dataset Dmix that has the most stable ST I 
values (Figure 2-17). Figure 2-16a-b show that linearδ consistently acquires less large forecast 
errors in comparison with the persistent model (as measured by RMSE), but exhibits the worst 
performance in terms of average accuracy of irradiance forecast (as measured by MAE), confirming 
that tracking a single sun-blocking pixel leads to a high risk of deviating from its real position 
and thereby falsely predicting the presence of clouds. By virtue of our proposed feature 
extraction in the sun-blocking window, this problem is mitigated in the other three models that 
consistently provide better results in both metrics. In comparison to linearall, which was trained 
using least-square errors, the linear SVR approach, SV Rlinear, tends to be more robust in terms of 
average errors (MAE); however, it is very sensitive to large errors (RMSE). The proposed non-
linear model, SV Rrbf , effectively addresses this problem by mapping non-linear relations to 
linear ones in a higher dimensional space. As is evident from these two figures, SV Rrb f effectively 
reduces the occurrence of large errors and outperforms the other four models in terms of the 
RMSE and MAE metrics. 
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Figure 2-16. Successful Tracking Index (STI) values for the datasets in the 1-15 minute forecasting range. Overall 

represents the results for the entire dataset, which contains all four independent subsets. 

 

 
a) Average MAE scores for five folds 

 
b) Average RMSE scores for five folds 

 
Figure 2-17. MAE and RMSE scores for irradiance predictions on the data subset Dmix over a time range from one 

to fifteen minutes. 
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We also analyzed the performance of SV Rrbf on the entire dataset and compared it with RShift across 
all 25 pyranometer measurements. Figure 2-18 shows the percentage of reduction in MAE achieved 
using SV Rrbf . The blue shaded regions represent the upper and lower improvement bounds for all 
25 pyranometers, whereas the mean improvements are plotted as blue dots with standard 
deviation bars. We observe that beyond a nine-minute horizon, the uncertainty in performance 
improvement, as indicated by the upper and lower bounds, increases with the increase in forecasting 
horizon. This is expected because many data points are out-of-FOV for the Ds and Dm subsets, 
which affects the reliability beyond the nine-minute horizon. Moreover, several successful cases that 
remain stable even beyond the nine-minute forecast are simpler ones, such as sunny and overcast 
conditions. Therefore, the persistence model RShift can take advantage of these cases to minimize 
error, and is thus difficult to outperform. In the same plot, we observe that both the difference 
between the upper and lower bounds and the standard deviation increase as the time horizon 
increases. We observe that despite the expected uncertainties arising for a long-term forecast, the 
SV Rrbf model is nevertheless significantly superior to the persistent model, achieving at least a 
26% improvement. 

 
Figure 2-18. Improvements in the MAE ratio achieved by the non-linear SVRrbf model in comparison with the 

persistent model on all available data. The Min/Max bounds represent the range of the percentage improvement 
values for all 25 stations. The average performance is denoted by the plotted line, which includes standard deviation 

bars on either side. 

To apply this study to real-time forecasting, we averaged the SV Rrbf parameters over the entire 
dataset and constructed the radiation-only model SV Rk to generate 5-, 10-, and 15-minute forecasts 
for 14 May 2013. Figure 2-19 compares the forecasting results of SV Rrbf and SV Rk with the real 
measurements from the deployed pyranometers. In the individual panels, the normalized GHI 
predictions are converted back to real values using Equation 2.1.1. To be consistent with the 
irradiance plots in Figure 2-19, the RMSEs in the caption are calculated directly from ground-
truth measurements (real GHI values) without normalization. The gray/dark areas in these figures 
represent gaps with no prediction, which include the cases corresponding to the low zenith angles 
during the early morning and late afternoon as well as the periods in which sun-blocking pixels 
were out of the FOV. The results show that the five-minute forecasts generated using SV Rrbf  
achieve good accuracy and capture most radiation ramps. Meanwhile, the number of detected 
ramps decreases for ten-minute and fifteen-minute forecasts because of the instability of the motion 
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vectors and the occurrence of clouds that may reside outside the field of the stitched view. 
Moreover, because SV Rk  only relies on radiation features, we observe that it exhibits a behavior 
similar to that of the persistence model, often failing to detect radiation fluctuations and generating 
false alarms based on previous irradiance trends. For a longer forecasting horizon, such as 10 or 
15 minutes, the forecasting accuracy of SV Rk  decreases rapidly, and the model cannot faithfully 
predict irradiance ramp events. Compared with SV Rk, SV Rrbf incorporates multiple features derived 
from predicted cloud movements and sky images and consequently, introduces fewer forecasting 
errors and captures more ramp events. 

2.1.6 Summary of TSICast Contribution 

BNL conducted research in short-term solar prediction and implemented a prototype system 
to forecast solar irradiance in real-time. In particular, we seamlessly incorporated new imaging 
technology, proposed and implemented cost-effective methods for image-based solar forecasts. 
To achieve the best performance, we studied image-based cloud tracking and feature extraction. 
This work integrated multiple image datasets into a very short-term solar forecast system, TSICast. 

With the development of various imaging systems and growing interests in image-based solar 
forecasts, there is an urgent need to provide reliable approaches to extract cloud information and 
to build irradiance models from sky images. BNL extracted cloud spatial-temporal information 
and investigated a series of image analysis modules for a complete forecast system, including 
image preprocessing, motion tracking, multi-camera integration, and multi-layer determination in 
various types of sky images. To improve the robustness of image-based prediction and extend 
the forecasting range, our work integrates heterogeneous image datasets and ensembles a series of 
cloud tracking and prediction algorithms, each of which has its own strength and weakness in 
different cloud conditions and prediction periods. BNL’s most significant contributions include: 

• BNL developed a cloud detection pipeline that utilizes a supervised classifier and 
abnormal image correction based on histogram equalization. This research significantly 
improved the accuracy of extracting cloud mask and attained good performance in various 
cloud types, weather conditions, and lighting patterns. 

• On the basis of previous work of tracking clouds in sky imagery, BNL designed a hybrid 
model of cloud motion tracking that combines block-matching and optical flow. The 
new model is able to determine local deformations of clouds, to extract cloud layers 
with dominant motion patterns, and to remove noise from the resulting motion field with 
customized motion filters. 

• BNL designed a comprehensive framework of cloud image simulations and generated 
synthetic image sequences using motion models and Gaussian noise. The simulated image 
is used for the evaluation of motion tracking models under different simulations, e.g., with 
cloud deformation and corrupted images. 

• BNL devised a short-term solar forecast system utilizing ground-based sky cameras. 
The system adopts multi-angle observations to undertake the task of cloud tracking 
based on spatial and temporal correlation and provides a pipeline to detect multi-layer 
motions via clustering. The robust feature extraction and irradiance models are then 
vetted for real production forecasts. Compared with single-camera models, the proposed 
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system significantly enlarges the field of view, enables 3-D cloud tracking, and obtains 
more accurate forecasts.  

 

 
a) 5-minute forecasts with RMSErbf = 145.3 and RMSEk = 213.5. 

 

 
b) 10-minute forecasts with RMSErbf = 171.3 and RMSEk = 223.6. 

 
c) 15-minute forecasts with RMSErbf = 177.5 and RMSEk = 241.0. 

 
Figure 2-19. Real forecasts based on our new prediction system using SVRrbf and SVRk. Gray/dark areas with a flat 
”0” or no forecast value represent data points that are out-of-FOV or correspond to a low zenith angle. RMSErbf 

and RMSEk are the root-mean-square square errors of SVRrbf and SVRk compared with the real GHI values. 
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2.2 STATCAST AND STATISTICAL PREDICTION 

2.2.1 Motivation for StatCast 

Utility companies and system operators need accurate deterministic short-range solar irradiance 
forecasts, including estimates of the variability, so that they can adequately balance the rapid 
changes as well as supply and demand peaks in the electrical grid. Artificial intelligence 
forecasting techniques can be used to obtain accurate short-range solar irradiance forecasts from 
15- to 180-min lead times and can also be used to predict spatial and temporal solar irradiance 
variability over the same short-range forecast lead-times. This project has explored various ways 
to construct and test such models for real-time operation, focusing on the SMUD regions, but 
deploying it throughout the project’s partner sites.  

2.2.2 Statistical Characterization of Solar Irradiance Variability 

It is important first to characterize the variability, which was accomplished by Laura Hinkelman 
of the University of Washington in collaboration with her students and Manajit Sangupta of NREL.  

2.2.2.1 Relationship of Resource Variability to Cloud Type 
Text below is selected from Dr. Hinkelman’s report to NREL, “Relating Solar Resource 
Variability to Cloud Type.” 

The results of this work will enable downscaling of satellite-based solar resource information 
under various cloud conditions and create data sets for transmission studies that contain the correct 
variability characteristics. Relationships between the temporal variability of solar irradiance 
measured at several stations in different areas of the United States and cloud type/properties were 
derived. Statistics describing the frequency of occurrence of the different cloud types at each 
location and relationships among the various cloud properties were also computed. 

Solar irradiances averaged over 1 minute were obtained for the year 2009 from the seven NOAA 
SURFRAD stations. Geostationary Operational Environmental Satellite (GOES)-based cloud data 
at 4 km spatial resolution and half-hourly temporal resolution over the same time period was 
received from NREL. This data was provided for areas around the SURFRAD stations and the 
DOE Atmospheric Radiation Measurement (ARM) Program Southern Great Plains (SGP) site. 
Information about all of the stations used in this analysis is listed in Table 2-5.  

Table 2-5. Measurement station geographic information. 

Station ID  Location Latitude (°) Longitude (°)  Elevation (m) 

BON Bondville, Illinois 40.052  -88.373  213 

DRA Desert Rock, Nevada 36.624  -116.019  1007 

FPK Fort Peck, Montana 48.308 -105.102 634 

GCR  Goodwin Creek, Mississippi 34.255  -89.873  98 

PSU Rock Springs, Pennsylvania 40.720  -77.931  376 

SGP Lamont, Oklahoma 36.605 -97.485 314 
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Station ID  Location Latitude (°) Longitude (°)  Elevation (m) 

SXF Sioux Falls, South Dakota 43.734  -96.623  473 

TBL  Boulder, Colorado 40.125  -105.237  1689 

 

The satellite data set provided a cloud type as well as several other cloud and radiative properties 
for each 4-km diameter footprint. These cloud types and the codes used to represent them are listed 
in Table 2-6. Note that although 13 cloud types are designated, several did not occur in the 
vicinities of the SURFRAD stations for the entire year of 2009: mixed ice and water, overlapping, 
dust, and smoke (types 5, 8, 10, 11, and 12). In addition, none of the data was assigned to the 
“unknown” category (type 10). This left seven types for the analysis: clear, probably clear, fog, 
water, supercooled water, opaque ice, cirrus, and overshooting (types 0-4, 6, 7, and 9). 

Table 2-6. GOES data set cloud types. 

Category Description 

0 Clear 

1 Probably clear 

2 Fog 

3 Water 

4 Supercooled water 

5 Mixed ice and water 

6 Opaque ice 

7 Cirrus 

8 Overlapping 

9 Overshooting 

10 Unknown 

11 Dust 

12 Smoke 

 

We first analyzed the occurrence of the seven cloud types in the vicinity of the SURFRAD and 
SGP stations. In order to better characterize these locations, the nine closest footprints were 
examined rather than just the closest one. This meant that an area of approximately 12 km x 12 km 
around each station was observed. This compensated for variability around the stations or slight 
geolocation errors in the footprint positions.  
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The frequency of occurrence of each cloud type determined using data from all nine footprints 
around each station is depicted in Figure 2-20. The typical pattern is for clear skies to dominate, 
followed by supercooled and cirrus clouds. Liquid water and opaque ice clouds are also common, 
followed by footprints determined to likely be clear. Very few cases of fog (low water clouds) and 
nearly no overshooting clouds were detected at any of the sites. The cloud type distribution at 
Desert Rock, Nevada, stands out from the rest, with a very large number of clear footprints and a 
correspondingly lower number of each cloudy sky type. In particular, there are many fewer 
supercooled clouds in that location. This difference is due to the location of Desert Rock in an arid 
region, where the air is dry and temperatures high, so that few clouds form. 

We next examined the spatial variability of the clouds within 6 km of the measurement stations. 
At each satellite imaging time, the most common cloud type occurring across the nine footprints 
was determined and the number of footprints with this cloud type was recorded. If fewer than five 
footprints had matching cloud types, this time was eliminated from consideration, because no 
single cloud type was dominant. 

The results of this analysis are shown in Figure 2-21. In this case, data for all eight stations has 
been combined. Each bar represents the number of times a given cloud type is dominant, i.e., at 
least five of the footprints have this classification. The colored segments of the bars indicate the 
proportion of these times that the cloud type occurs in 5, 6, 7, 8, or 9 of the footprints, respectively. 
Bear in mind that the number of total occurrences of each cloud type varies greatly, so that 50% 
of one type does not represent the same number of total occurrences as 50% of another, as shown 
in Figure 2-20.  

 
Figure 2-20. Cloud types for all SURFRAD sites and the SGP station combining data from the nine GOES-E 

footprints surrounding each station. 
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The results indicate that certain cloud types tend to occur over large areas while others are mixed 
with other, likely similar, types. For example, clear skies or overshooting clouds (i.e., 
thunderstorms) mainly occur uniformly over large areas, while fog and the “probably cloudy” class 
are most likely to be mixed with other clouds. This is likely due to the definitions of these classes.  

 
Figure 2-21. Spatial uniformity of cloud types around a ground station. 

Here “fog” means low or thin liquid clouds. Thus spatial variations in liquid cloud properties will 
lead to different cloud classifications at neighboring footprints. Likewise, the classification of 
“probably clear” indicates that the retrieval is uncertain; some of these footprints are likely clear 
while others may contain thin clouds. The third most homogeneous cloud type is supercooled 
liquid cloud, while the remaining three types – liquid, opaque ice, and cirrus (types 3, 7, and 8) are 
completely homogeneous only about 40% of the time. 

Next, the temporal variability of the incoming solar irradiance at the SURFRAD stations was 
analyzed as a function of cloud type. The 1-minute averaged irradiances for solar zenith angles 
greater than 85° were converted to transmittance (clear-sky index) using top of atmosphere 
incoming irradiances from an ephemeris code. The differences between consecutive samples were 
then computed. The fifteen transmittance differences occurring immediately before and after each 
satellite sampling time were associated with the corresponding cloud data, which was then sorted 
by cloud type. Statistics of the absolute values of the transmittance differences were then computed 
over the entire population of each cloud type at each SURFRAD site. These statistics included the 
full cumulative distribution functions as well as the magnitude of the differences at the 95th 
percentile of the distributions. The 95th percentile values are plotted in Figure 2-22. A consistent 
pattern emerged from this analysis, in which the magnitude at the 95th percentile was lowest for 
opaque ice clouds and highest for fog (thin water clouds), with cirrus, supercooled, and water 
clouds ranged from lower to higher values in between. A notable exception is the 95% point for 
fog at Desert Rock, NV. This may be due to actual differences between fog banks at this and other 
locations or difficulty identifying thin clouds over the bright desert surface. 
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Figure 2-22. 95th percentile points in 1-minute average transmittance difference distributions as a function of 

location and cloud type. 

Cloud type determination algorithms depend on the available measurements. For example, the 
instruments on the GOES-East and GOES-West satellites utilize different sensor wavelength 
bands. This means that relationships determined using GOES-East data, as in this study, may not 
be applicable to data from other satellites. We therefore continued this study with a focus on 
irradiance variability as a function of cloud properties. While cloud properties retrieved using data 
from different instruments may also differ, these values can at least be assessed using independent 
measurements and these differences, due to instrumentation differences, can be quantified. In 
addition, this approach could link to properties predictable by a numerical weather forecast model, 
thus providing a way to forecast rapid solar irradiance variability for the solar power industry. A 
finding that 95th percentile points were closely related to mean cloud transmittance suggested that 
this would be a fruitful avenue. 

The cloud properties available from the satellite data sets included optical depth, liquid water path, 
cloud top height, and cloud fraction. We made no a priori assumption about how many parameters 
would be needed to specify the variability profile. Instead, we first compared the behavior of the 
different cloud properties. Since there is a clear relationship between optical depth and liquid water 
path given by, τ = 3/2 LWP/(ρ re), where τ is the cloud optical depth, LWP is the liquid water path, 
ρ is the density of water, and re is the effective radius of the cloud droplet distribution, liquid water 
path was immediately eliminated from consideration. 

Plots of the three remaining variables against each other are shown in Figure 2-23 for two of the 
SURFRAD stations, one in a humid mid-latitude site (Bondville, IL), the other at an arid site 
(Desert Rock, NV). From these plots and correlation coefficients, we see that cloud height and 
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fraction have a clear correspondence, but optical depth is relatively independent of both cloud 
fraction and height. 

To be useful predictors of solar irradiance variability, the cloud properties not only need to be 
independent of each other but also correlated with the variations. In Figure 2-24 we plot the 95th 
percentile points for the populations of 1-minute averaged total hemispherical irradiances falling 
in a given cloud height, fraction, or optical depth bin. As seen earlier, cloud optical depth, which 
directly determines transmittance, has a clear, though not one-to-one, relationship with variability. 
Surprisingly, cloud fraction does not. We would expect broken clouds to lead to higher variability, 
but cloud fraction depends only on the total cloud amount, not brokenness. Another measure of 
brokenness should probably be sought. The surprising result of this analysis is that cloud top height 
exhibits a nearly linear relationship to the 95th percentile of an irradiance distribution function, 
indicating that it would be a good criterion from which to estimate irradiance variability. 
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Figure 2-23. Relationships among cloud fraction, optical depth, and height at Bondville, IL (left), and Desert Rock, 

NV (right). 
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Figure 2-24. 95th percentile points in 1-minute average transmittance difference distributions as a function of 

location and cloud optical depth (top), fraction (middle), and height (bottom). Plots in the left (right) column include 
only times of day with solar zenith angles less than 45° (60°). 
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2.2.2.2 Solar Resource and Variability in the Northwest United States 

The University of Washington additionally studied the variability of the solar resource in the 
Pacific Northwest. The following text is derived from the thesis of Nevin Schaeffer, a Whitman 
College student who worked with Laura Hinkelman at the University of Washington during the 
summer of 2015. 

Studies have shown that with more accurate forecasting of the solar energy variability (Hoff et al. 
2010) and geographically distributed PV array sites (Madrigal et al. 2013; Mills et al. 2010; Hoff 
et al. 2010), the costs of grid integration can be greatly minimized, especially in conjunction with 
systematic changes to grid operation practices, such as sub-hourly scheduling, using updated solar 
forecasts and diversity in the rest of the power generation sources tied to the same grid (Lew et al. 
2010). Motivated by the need to understand the effect of clouds on solar power generation, to 
improve solar forecasting and facilitate the integration of solar energy into the national power grid, 
this study attempts to relate the weather and climate of five sites throughout the Northwestern 
United States (Table 2-7 and Figure 2-25) to site specific five minute global horizontal irradiance 
data and calculated clear-sky index. The five sites were chosen to be a representative spread of the 
region's climate zones. 

Table 2-7. Distances between sites in miles, ranging from 156 to 520 miles of separation between site pairs. 

From To Distance [miles] 
Burns, OR Dillon, MT 336 
Burns, OR Eugene, OR 204 
Burns, OR Hermiston, OR 156 
Burns, OR Twin Falls, ID 243 
Dillon, MT Eugene, OR 520 
Dillon, MT Hermiston, OR 325 
Dillon, MT Twin Falls, ID 205 
Eugene, OR Hermiston, OR 223 
Eugene, OR Twin Falls, ID 446 
Hermiston, OR Twin Falls, ID 330 

 
Figure 2-25. Map of the Northwestern United States showing the site locations for Burns, OR, Dillon, MT, Eugene, 

OR, Hermiston, OR, and Twin Falls, ID. 
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Five-minute resolution GHI time series were obtained from the University of Oregon Solar 
Radiation Monitoring Laboratory (UOSRML) (http://solardat.uoregon.edu/index.html) for five 
sites spread throughout the Northwest United States (see map in Figure 2-25 and distances between 
sites in Table 2-7). The sites were chosen based on their geographic position, grade of 
instrumentation, and completeness of data from the years 2004 to 2013, to ensure a variety of 
climate zones and reliable data. Deemed 'First-Class' stations by the UOSRML, the Burns, OR, 
Eugene, OR, Hermiston, OR, and Dillon, MT, sites are equipped with Eppley PSP pyranometers, 
Eppley NIP pyrheliometers, and Campbell Scientific CR-10 data loggers. To increase coverage of 
the region, the Twin Falls, ID, AgriMet site, equipped with a LI-COR pyranometer and Sutron 
data logger, was also analyzed. LI-COR pyranometers use a photodiode (solar cell) to measure the 
solar irradiance as a function of the color of the sky (blue if clear, gray if cloudy). Eppley PSP 
pyranometers use a multi-junction wire-wound Eppley thermopile that measures the solar 
irradiance as a function of radiant heat. On a day-to-day basis, the total solar irradiance 
measurements of a LI-COR and an Eppley PSP pyranometer are fairly similar, though 
measurements can differ based on the cloud cover on an hourly or shorter timescale.  

As the focus of this study is the climatological effects on solar irradiance, the seasonal analysis in 
this study uses meteorological seasons instead of the typical astronomical seasons. Hence, winter 
spans December, January, and February, spring spans March, April, and May, summer spans June, 
July, and August, and fall spans September, October, and November. 

To calculate the variability at each site, the values of the original time series were averaged every 
n rows, with n determined by the desired time interval, and the absolute value of the difference 
between adjacent values was calculated to represent the short-term variability. Time intervals of 
interest for this study include 5, 15, 30 and 60 minutes (with respective n values of 1, 3, 6, and 12). 
Variability statistics analyzed in this study include the mean and 95th percentile values. The 95th 
percentile values isolate the statistic from the extreme values and represent the value at which 95% 
of the data is less than or equal to that value. Two-way t-tests were computed in R using the t.test() 
function. 

Looking at the short-term variability of the GHI time series at the 5-minute timescale, Figure 2-26 
presents a comparison between sites and month of the year. The solar irradiance difference 
represents the magnitude that the PV array output ramped, either up or down, in a five-minute 
period as a monthly average. Greater magnitudes of the differences correspond to greater difficulty 
for the power grid operators to adjust to the short-term variability. One importance of Figure 2-26 
lies in noting the sharp peak in solar irradiance difference at all five sites in the late spring (April 
(4) and May (5)). Similarly, in Figure 2-27, the estimated broken cloud cover percentages spike in 
the late spring as well. While this correlation cannot be quantified in this study due to the 
unavailability of high resolution cloud data, the visual mirroring of broken cloud cover and 
magnitude of solar irradiance differences in Figure 2-26 and Figure 2-27 persists as an interesting 
observation worthy of further research. Antón et al. (2011) similarly found the greatest variability 
during the month of April and concluded that short-term fluctuations increase as a function of 
cloud cover, except for completely overcast conditions where the short-term variability actually 
decreases slightly. Completely overcast conditions are much more uniform than partly cloudy 
conditions, and therefore it makes sense that short-term variability would decrease at such times 

http://solardat.uoregon.edu/index.html
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when the cloud cover over a solar array might be moving, but is not changing significantly in terms 
of light penetration. 

 
Figure 2-26. Monthly averaged five-minute variability by site (2004-2013 average). 

 

 
Figure 2-27. Estimated fraction of broken cloud cover (mostly cloudy, partly cloudy and mostly clear skies) within 

all sky conditions, by month for each site. Adapted from cloud cover plots for 30 years of averaged data 
(weatherspark.com). Note the peaking of broken cloud cover in the spring months for all sites (red box). 

2.2.3 Introduction to StatCast 

The specific forecast lead time, the type, quality, and flow of observations, and also the choice of 
forecasting method all impact short-range solar irradiance forecasting accuracy. There are multiple 
methods for short-term solar irradiance forecasting, including ground-based sky image advection 
techniques, satellite-based cloud advection models, and fast-running NWP models. Each of these 
methods, however, has strengths and limitations depending on the data sources and forecast lead 
time. In this study we utilize the strengths of multiple data sources by blending surface weather 
observations, irradiance observations, and satellite data via statistical learning algorithms into a 
product called StatCast. We focus on the forecast lead times of 15 minutes to three hours where 
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both the deterministic irradiance prediction and the forecasted variability of the irradiance are 
essential for utility companies and systems operators. We also show that a model tree statistical 
technique can predict both the temporal and the spatial irradiance variability more accurately than 
assuming climatology.  

To achieve short-term solar irradiance predictions, we use surface weather observations and solar 
irradiance observations as inputs and predictors for a regime-dependent forecasting system. We 
also test the benefit of including GOES-East satellite data as an input and predictor. Several cloud 
regime-dependent short-range solar irradiance forecasting systems are also tested to make 15-
minute average clearness index predictions for 15-, 60-, 120-, and 180-minute forecast lead-times.  

Several versions of StatCast have been developed as part of the DOE SunShot project and of the 
Ph.D. dissertation of Tyler McCandless, who defended his dissertation entitled, “Artificial 
Intelligence Techniques for Short-Range Solar Irradiance Prediction,” at The Pennsylvania State 
University in August 2015. StatCast actually forecasts clearness index, Kt, which is the ratio of 
the amount of irradiance (in this case, GHI) that reaches the earth’s surface divided by the 
irradiance that impinges on the top of the atmosphere.  

 
𝐾𝐾𝐾𝐾 =  𝐺𝐺𝐺𝐺𝐺𝐺 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑇𝑇𝑇𝑇𝑇𝑇 𝑜𝑜𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑒𝑒𝑒𝑒𝑒𝑒
                      (2. 7) 

 

All of the versions of StatCast use a background solar irradiance model to compute the irradiance 
at the top of the atmosphere. They then predict the value of Kt and apply that to predict the 
irradiance at the ground. The four current incarnations of StatCast include: 

 
1. StatCast-Persistence –The model assumes that Kt persists from the previous time step. This 

results in a model that recognizes the changes in solar angle, but assumes persistence of 
atmospheric constituents and clouds. This is sometimes called “smart persistence” and is 
used in much of the rest of the assessment as a baseline. 

2. StatCast-Cubist – This version of StatCast uses the Cubist model regression tree to train 
on historical data, then predicts in real-time. 

3. Regime-Dependent StatCast – RD-StatCast uses a k-means clustering method to separate 
instances into cloud regimes, then applies an artificial neural network (ANN) to each 
regime separately. 

4. Regime-Dependent StatCast incorporating Satellite Data – Based on the third version, this 
most advanced version of StatCast also includes data from the GOES-East satellite to 
determine cloud state. 

 

The inclusion of regime dependence was inspired by initial experiments with data that divided a 
time series into clear, cloudy, and partly cloudy days. The average behavior of those types of days 
is distinctly different, as shown in Figure 2-28. This observation led us to test developing 
specifically regime-dependent models, which has proven successful. 
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Figure 2-28. GHI as measured at the NREL Golden site for 1 year, with days separated into clear (blue), partly 

cloudy (red), and cloudy (black). The green line is the computed GHI at the top of the atmosphere. 

2.2.4 State-of-the-Science of Short-Range Statistical Models 

The optimal method for solar irradiance prediction depends on several factors, including the 
forecast lead time, with statistical techniques and cloud advection techniques most effective for 
short-range irradiance forecasting. Short-range forecasting is defined here as solar irradiance 
predictions from 15 to 180 minutes. Predicting solar power through statistical techniques has 
gained the attention of researchers in recent years. Sharma et al. (2011) found that a support vector 
machine approach to post-processing NWP model forecasts produced lower GHI forecast error 
compared to linear regression post-processing techniques. For intra-day irradiance forecasts, a 
combination of methods works best, including empirical models, satellite-based techniques, 
statistical methods, and NWP models (Lorenz et al. 2012; Kleissl 2013; Bouzerdoum et al. 2013; 
Voyant et al. 2013, 2014), with the combination producing the lowest forecast error depending on 
the specific lead time and available predictors. Hassanzadeh et al. (2010) and Yang et al. (2012) 
found that autoregressive integrated moving average (ARIMA) models produced lower solar 
irradiance and solar power errors compared to other time series short-range prediction techniques, 
while Morf et al. (2014) used a Markov process to predict sunshine and cloud cover. Mellit (2008) 
reported that artificial neural networks have been used in modeling and predicting solar radiation 
more than any other non-linear technique. More recently, several studies determined that models 
based on ANNs improve solar irradiance or solar power forecast accuracy compared to various 
baseline techniques (Martin et al. 2010; Hall et al. 2011; Marquez and Coimbra 2011; Wang et al. 
2012; Chu et al. 2013; Cornaro et al. 2013). Several studies have examined the performance of 
these statistical forecast models in various weather conditions. Pedro and Coimbra (2012) found 
the accuracy of an ANN optimized with a genetic algorithm had a strong seasonal dependence. 
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Marquez et al. (2013b) correlated total sky images, infrared data, and solar radiation observations 
at the surface to use as input to an ANN and found the variability of solar radiation to be strongly 
dependent on the amount of cloud cover. Each day was classified as sunny, partly sunny, or cloudy, 
and an ANN was used to forecast the daily profile of the power produced by a PV plant (Mellit et 
al. 2014). Fernandez et al. (2014) concluded that the ANN model has lower errors for days 
characterized by direct irradiance (clear days) and for days characterized by diffuse irradiance 
(cloudy days) than for days characterized by a mix of direct and diffuse irradiance (partly cloudy 
days). 

Statistical methods are well suited to combining multiple predictors in such blended forecast 
systems. Statistical models of appropriate complexity for the GHI forecast problem maximize the 
predictive value from the available predictors (e.g., satellite and ground-based observations). Any 
regression method can be applied to GHI forecasting, but the ANN is one of the most powerful, 
general, and therefore most widely used (e.g., Mellit 2008; Martin et al. 2010; Pedro and Coimbra 
2012; Notton et al. 2012; Bhardwaj et al. 2013; Bouzerdoum et al. 2013; Diagne et al. 2013; Fu 
and Cheng 2013; Marquez et al. 2013b; Inman et al. 2013; Chu et al. 2013; Fernandez et al. 2014; 
Almonacid et al. 2014; Quesada-Ruiz et al. 2014). The relevant predictors for estimating direct 
normal irradiance (DNI) with a Bayesian ANN method were found to be the clearness index and 
the relative air mass in Lopez et al. (2005). Pedro and Coimbra (2012) found that an ANN time 
series model out-performed persistence, ARIMA, and k-Nearest Neighbors (kNN) models for 1-2 
h solar power predictions. Marquez et al. (2013b) used processed satellite images as input into 
ANNs to predict GHI from 30 minutes to 120 minutes and found between 5% and 25% reduction 
in root mean square error (RMSE) compared to that of persistence. A challenge with ANNs, 
however, is the large number of tunable parameters, which is on the order of the number of 
predictors multiplied by number of neurons. This requires a large quantity of training data to 
prevent over-fitting and the consequent loss of skill on independent data (i.e., operational use). 
Another concern with using ANNs in operational forecasting is the lack of physical interpretability 
that could directly provide the user with forecast variability information.  

At forecast lead-times of 15 minutes to three hours, satellite-based cloud advection techniques 
have traditionally been used. These techniques use cloud-motion vectors (CMVs) that are 
computed from consecutive satellite images and then used to advect the satellite observed clouds 
into the future. The use of CMVs for solar irradiance and solar power prediction was proposed by 
Beyer et al. (1996) with Hammer et al. (1999) and Lorenz et al. (2004) developing more advanced 
advection schemes. A forecasting method that uses a phase correlation between consecutive 
Meteosat-9 images has been used to predict 30-min cloud index values out to four hours lead time 
and on average showed 21% improvement in RMSE compared to cloud index persistence (Cros et 
al. 2014). Bilionis et al. (2014) extend the cloud advection technique to a probabilistic prediction 
by using principal component analysis (PCA) prior to applying a Gaussian process model. To 
address the errors due to assuming steady clouds during advection, Miller et al. (2014) group cloud 
pixels into cohesive cloud structures and then employ an appropriate steering flow that uses cloud 
group properties to forecast their downstream development and sheering characteristics. Their 
intermediate position in the lead-time spectrum makes satellite-based techniques prime candidates 
for blending with other forecast techniques. 

We also note that separating conditions by weather or cloud regime shows promise for improving 
a forecast. The irradiance variability was shown to differ among satellite data derived cloud types 
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in Hinkelman (2014). Regime-based prediction has been used in several different solar irradiance 
and solar power applications. Tapakis and Charalambides (2013) provide a review of various 
methodologies for both supervised and unsupervised cloud classification. The unsupervised 
techniques classify based on the pixels of an image. The supervised techniques, which are divided 
into simple, statistical and artificial subgroups, classify based on available training datasets and 
arithmetic complexity of the technique. A one-step stochastic prediction process of cloud cover or 
clearness index with transition matrices dependent on the relative sunshine amount is presented in 
McCandless et al. (2014) and Morf (2014). Zagouras et al. (2013) used a k-means clustering 
algorithm with a stable initialization method to identify regimes based on step-changes of the 
average daily clear sky index in the region near San Diego, California. A simple approach based 
on the daily total solar irradiance identified clear, partly cloudy, and cloudy regimes with separate 
ANN models developed on each regime in Mellit et al. (2014) and showed that, particularly for 
the cloudy days, the ANN model trained on only those days improved on the ANN model trained 
on all days. McCandless et al. (2016a) used a k-means algorithm on surface weather and irradiance 
observations to identify regimes before applying an ANN. The separation into cloud regimes 
allows an artificial intelligence (AI) model to identify repeatable patterns in surface solar 
irradiance; however, there is a lack of research into 1) what are the most important inputs for cloud 
regime classification and 2) what are the most important predictors for an AI method to most 
efficiently make accurate short-range predictions of solar irradiance.  

Finally, variability, both in space and time, is important to quantify for full application of short-
range solar power forecasts. The quantification of temporal solar irradiance variability caused by 
the advection and dynamic evolution of clouds has been recently studied. Mills et al. (2009) 
showed a passing cloud at a point produces solar insolation variation exceeding 60% of peak 
insolation in a matter of seconds. As mentioned above, Hinkelman (2007) found that not only are 
the irradiances themselves larger in the middle of the day but also the fractional change in 
irradiance from one time to another is larger. Hinkelman (2013) also determined that cloud optical 
depth and cloud height are the best predictors of irradiance variability at one-minute time 
resolution. Kuszmaul et al. (2010) analyzed 1-sec PV output data and showed that it is linearly 
proportional to the spatial average of irradiance. Reikard (2009) examined data at resolutions of 5, 
15, 30, and 60 minutes and found that the “data exhibits nonlinear variability, due to variations in 
weather and cloud cover.” These studies have examined the variability of measured solar 
irradiance due to changes in cloud cover. 

In addition to temporal variability, several studies have examined the spatial variability of solar 
irradiance. Zagouras et al. (2014) used cluster analysis for the determination of coherent zones of 
GHI for utility scale territory in California, and used step-changes of the daily average clear sky 
index at each location to characterize the fluctuation of GHI. Gueymard and Wilcox (2011) 
analyzed solar power’s regional dependence and showed greater variability tends to occur in 
coastal areas, particularly the California coast, and mountainous areas because of the micro-
climate effects of topography. Rayl et al. (2013) performed an irradiance co-spectrum analysis and 
concluded that solar power site aggregation could greatly reduce power variability on short time 
scales depending on the distance between sites.  

The goal of our study is to use observed meteorological data together with a network of irradiance 
observing sites to better predict solar irradiance on the 15-min to 3-h timeframe as well as its 
temporal and spatial variability, both measured in terms of a standard deviation from the mean 
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value of the GHI. The focus is on short-term predictions, which as Nguyen and Kleissl (2014) 
state, “intra-hour solar forecasting for power production and ramp events has become an important 
need in the solar industry as the inevitable variability of solar power will have a greater impact on 
energy resource management as solar penetration increases.”  

2.2.5 Research Approaches to StatCast 

Here we describe in detail the formulation of each of the versions of StatCast. In the following 
section, we detail the data used in the training and follow with specific results. The primary site of 
application for StatCast is the SMUD irradiance measurement sites. 

2.2.5.1 StatCast – Persistence 

We use clearness index persistence as our baseline prediction technique for comparison. Clearness 
index persistence is commonly referred to as “smart persistence.” It inherently corrects for changes 
in solar elevation with time and can be easily converted back to GHI for operations if the clearness 
index forecast is multiplied by the top-of-atmosphere GHI.  

This baseline technique uses the last available 15-min average observation of the clearness index 
as the prediction for subsequent times. For locations with either generally clear conditions or 
steady cloud cover, this technique is difficult to beat. In contrast, when the sky condition is 
characterized by mixed or variable clouds, the clearness index persistence technique performs 
poorly.  

2.2.5.2 StatCast – Cubist 

The artificial intelligence technique used for this version of StatCast is the model tree, or Cubist 
model, which is Quinlan’s (1992) M5 model tree formatted as a set of rules (Kuhn et al. 2012). 
The model tree uses a “separate-and-conquer” algorithm to search for a rule that explains part of 
the training instances, separates these instances, and continues this process until no instances 
remain (Quinlan 1993). The algorithm reformulates the tree into a set of rules and places a 
multivariate linear model at each leaf in order to predict our continuous predictands of solar 
irradiance variability. See Quinlan (1987a, 1987b, and 1992) for a detailed explanation of this 
process. The final prediction is a weighted average of the multivariate linear regression equations 
at each node in the tree down to the final leaf (Kuhn et al. 2012). This weighted averaging is 
accomplished by a smoothing process that adjusts the predicted value from the leaf up to the root 
via, 

𝑃𝑃𝑃𝑃(𝑆𝑆) =  𝑛𝑛 𝑥𝑥 𝑃𝑃𝑃𝑃(𝑆𝑆𝑆𝑆)+𝑘𝑘 𝑥𝑥 𝑀𝑀(𝑆𝑆)
𝑛𝑛+𝑘𝑘

      ,           (2.8) 

where n is the number of instances, i, in the node S, PV(Si) is the predicted value at node S and 
instance i, Si, k is a smoothing factor set equal to 15, and M(S) is the model prediction at the leaf 
of the sub-tree. This smoothing is done to capture the skill in the predicted values at nodes along 
the tree down to the final leaf. Figure 2-29 displays an example description of the model tree with 
the red branch highlighting the sub-tree used in this example prediction. Thus, this model tree is a 
set of rules that are paths from the top to bottom of the tree with each node’s multivariate linear 
model output used in the final prediction. 
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Figure 2-29. Flowchart and description of the model tree. For this arbitrary instance, the sub-tree in red is used to 

make the final prediction via the equation at the bottom. 

We use an additional model option that combines the model tree’s prediction with a prediction 
given the training dataset’s nearest neighbor to further reduce the model tree’s error. The nearest 
neighbor option first finds the training cases that are most similar to the current instance. Then the 
model tree is used to make predictions for all of the nearest neighbor instances and the current 
instance. The value of the current instance prediction is adjusted based on the difference between 
the current instance prediction and the prediction for the nearest neighbor instances. A sensitivity 
study, shown in Table 2-8, indicates that optimal configuration of the model tree includes one 
nearest neighbor, which results in the lowest mean absolute error for all four forecast lead times 
tested. 

Table 2-8. Sensitivity study for the number of nearest neighbors used in the model tree prediction. The values shown 
are the MAEs of the model predicting GHI temporal standard deviation (W m-2). Using one nearest neighbor results 

in the lowest MAE for all lead times. 

ALL DATA - NUMBER OF NEAREST NEIGHBORS - GHI 
Lead Time 0 1 2 5 9 
15 35.04 26.86 29.04 31.98 33.45 
60 49.33 35.75 38.69 43.25 45.66 
120 58.91 42.31 45.44 50.45 53.50 
180 59.81 44.60 47.51 52.38 52.38 

2.2.5.3 Regime-Dependent StatCast 

We chose to develop a cloud regime-dependent short-range solar irradiance forecast system not 
only to improve the deterministic forecast accuracy, but also to provide a quantification of the 
expected solar irradiance variability and corresponding forecast uncertainty. This section outlines 



The Sun4Cast Solar Power Forecasting System   

 

76 
 

our classify-then-predict process; the details are described in the following sections. Our 
methodology begins by classifying the cloud regime with the k-means algorithm. We then train a 
separate ANN to make predictions for each individual regime as depicted in Figure 2-30. This 
novel work goes beyond Mellit et al. (2014), Marquez and Coimbra (2011), and others in the 
sophistication and automation in identifying regimes with the k-means algorithm and in the 
regime-dependent configuration of the ANNs that are specific to improving the final prediction 
algorithm. The process begins by selecting the optimal set of inputs for cloud regime classification 
that corresponds to the final model with the lowest forecast error. The selected set of inputs is then 
used by the k-means algorithm to classify and partition the datasets into an optimal number of 
cloud regime subsets. Finally, ANNs are constructed on each of the cloud regime datasets 
independently. This classify-then-predict process (with k-means then ANN) is repeated for each 
forecast lead-time. 

 

 
Figure 2-30. Process design: first, classify cloud regimes on the optimal set of potential inputs shown in the red 
rectangles outlined in the black box, and then apply ANN models to predict the clearness index on each regime 

independently. An ANN is also applied on all data (i.e., without regime identification), and compared to the 
clearness index persistence prediction. 

A cloud regime-dependent AI system requires dividing the cases into distinct regimes for which 
the fundamental relationship between predictors and predictands is expected to differ, and 
therefore, to allow more accurate short-range forecasts. Thus, careful sensitivity studies 
determined the optimal configurations of the AI models in order to match the complexity of the 
relationships among the predictors in the regimes. After all data are quality controlled and 
additional variables are derived, the datasets are randomly split two-thirds for training and one-
third for testing. All of the results shown are from the testing datasets; however, the sensitivity 
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tests conducted to determine the optimal configurations of the system were performed on the 
training datasets. The ANN and k-means sensitivity studies similarly split the training dataset into 
two-thirds for training and one-third for testing and the optimal configuration was determined 
based on this one-third independent test set. This approach avoids compromising the independence 
of the initial test dataset. We show results in this study for four forecast lead times: 15 min, 60 
min, 120 min, and 180 min. These predictions are for the 15-minaverage clearness index ending 
at each lead time. 

In a real-time forecasting environment, predictions are made in a three-step process. In the 
preprocessing step, the data are collected, quality controlled, and the additional predictors are 
computed. In the regime classification step, the trained k-means algorithm is applied to the current 
data. Then, the ANN trained for the currently classified cloud regime and forecast lead-time is 
used to predict the solar irradiance (clearness index). The ANNs use numerical weather prediction 
analysis data and irradiance observations as input to predict clearness index at multiple locations 
in the vicinity of Sacramento, California. 

2.2.5.4 Regime-Dependent StatCast Incorporating Satellite Data 

In an effort to develop a “best practices” method for regime-dependent statistical forecasting of 
clearness index, we tested multiple regime-dependent prediction methods for solar irradiance 
prediction given various inputs and predictors; therefore, we use a dataflow diagram (Figure 2-31) 
to describe the relationships between the various techniques. The top tier represents the data 
sources: irradiance observations, Meteorological Aviation Reporting (METAR) surface weather 
observations, derived predictors, and satellite data, which are split into two boxes for the measured 
and the derived variables. The GOES-East satellite derived variables are included only in the 
instances that are not defined as clear. The second tier illustrates this separation into the satellite-
determined clear instances and satellite-determined cloudy instances. This is the first regime 
separation in our prediction process. The third tier of Figure 2-31 describes the prediction methods 
for all other instances. From left to right, the first prediction technique is the ANN applied on the 
clear dataset. The next prediction technique is an ANN without additional regime classification. 
The final three are the Regime-Dependent ANNs, which are hereafter given the name RD-ANN. 
The first RD-ANN method is based on regimes determined explicitly from the “cloud type” 
variable in the GOES-East data, which is labeled RD-ANN-GCT where GCT stands for GOES 
Cloud Type. The next RD-ANN technique is the k-means cloud regime classification that includes 
inputs from all of our data sources, which we name RD-ANN-GKtCC because it includes GOES-
East data, Kt observations, and cloud cover from the METAR observations. The final prediction 
technique does not include the satellite measurements and is a direct comparison to previous work 
(McCandless et al. 2016a). This method is named RD-ANN-KtCC because it includes the Kt 
observations and the cloud cover. The fourth tier elements are the final predictions from all of the 
prediction techniques, including the baseline technique of clearness index persistence. 
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Figure 2-31. Overall process design for our regime dependent prediction technique and the comparison techniques. 

2.2.6 Data for StatCast Predictions 

2.2.6.1 Irradiance Data 

The network of irradiance observing sites used in this study is that of the SMUD in California, 
which is an area of varying terrain covering approximately 900 square miles (Bartholomy et al. 
2014). In order to evaluate the prediction techniques, this study follows the same procedure as the 
planned real-time operational implementation. We use data from eight solar power forecast sites 
that measure irradiance, shown in Figure 2-32 as blue triangles. The GHI observations are 
available for a period of 367 days from 25 January 2014 through 26 January 2015. The temporal 
resolution of the raw data is one minute and averages are computed over 15-minute intervals 
ending at :00, :15, :30, and :45 minutes for each hour. The 15-minute averaged GHI data are then 
converted to clearness index values. This averaging interval was selected after communication 
with several utility companies and agrees with the shortest time range for which a forecast is 
currently useful for dispatch decision-making.  

Therefore, our prediction techniques ingest four predictors from the irradiance data, each 
converted to Kt: the average Kt from 60-45 minutes, from 45-30 minutes, from 30-15 minutes, 
and the past 15 minutes prior to forecast initialization time, which is the start of every hour. 
Hereafter, these predictors are named Kt_Prev60, Kt_Prev45, Kt_Prev30, and Kt_Prev15. 

The solar irradiance data from all eight SMUD pyranometers is aggregated and all instances with 
missing data or nighttime observations are excluded from the final dataset. There are a total of 
71,184 instances in the final dataset. 
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Some limited comparisons are also shown below for the Long Island Solar Farm located on 
Brookhaven National Laboratory’s property. Details of that setup can be found in McCandless et 
al. (2016b). 

 

 
Figure 2-32. Map of the SMUD pyranometers (blue triangles) and METAR/DICast predictor sites (red Xs). 

Surface weather observations are not available at the irradiance observation sites; therefore, the 
three nearest METAR sites are used to characterize the local weather, which represents hourly 
surface weather observations from stations typically located at airports across the United States. 
The METAR observations are quality controlled by NCAR for ingest to the Dynamic Integrated 
foreCast (DICast®) System (Mahoney et al. 2012). The closest METAR sites to the SMUD 
pyranometers are the three locations plotted as red X’s in Figure 2-32. We use six weather 
variables: cloud cover, dewpoint temperature, categorical precipitation in the last hour (1 = 
precipitation occurred, 0 = precipitation did not occur), precipitation amount, temperature, and 
wind speed.  

2.2.6.2 Satellite Data 

The satellite data used as forecast predictors came from NOAA’s GOES-East satellite. The GOES 
data were chosen for this work because they are acquired operationally every 15 minutes with a 
nominal nadir footprint of just 1 km in the shortwave and 4 km in the infrared channels. GOES-
East was selected over GOES-West for two reasons. First, the position of GOES-East at 75°W 
provides views of both the California and New York forecast sites at less oblique angles than the 
135°W location of GOES-West. Second, processed GOES imager data were only available from 
the GOES-East acquisitions at 0:15 and 0:45 after the hour and from GOES-West acquisitions at 
0:00 and 0:30 after the hour. Allowing for a latency time of 15 min, the 0:45 acquisition provides 
the most up-to-date information for the re-initialization of our forecast system at the top of every 
hour. 
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The GOES-East data consists of both directly measured and retrieved variables provided in level-
2 output from the Pathfinders Atmosphere-Extended (PATMOS-x) retrieval suite (Heidinger et 
al., 2013), which is run operationally by NOAA’s Cooperative Institute for Meteorological 
Satellite Studies (CIMSS) and, for this project, by the Cooperative Institute for Research in the 
Atmosphere (CIRA). The directly measured variables are radiance values at wavelength bands 
centered on 650 nm (visible) and 3.75 μm (infrared) and brightness temperatures at 3.75 μm and 
11.0 μm (water vapor window). The retrieved variables applied in this study were cloud top 
temperature, cloud fraction, cloud optical depth, hydrometeor effective radius, and cloud type, 
where the cloud types included the categories fog, liquid water clouds, supercooled water clouds, 
opaque ice clouds, cirrus clouds, vertically overlapping clouds, and overshooting clouds. 
Instantaneous solar zenith angles were also taken from the satellite data files. The data are provided 
as un-gridded 4-km footprints. The values supplied to the forecast system are averages over the 
nine footprints closest to each of the forecast locations at 0:45 after each hour. 

2.2.6.3 Derived Variables 

In addition to the observed irradiance and weather predictors, it is often useful to derive additional 
variables in order to emphasize important physical processes. Based on our previous work 
(McCandless et al. 2016a), we derive inputs specific to the k-means classification system as well 
predictors specific to the ANN prediction system. In particular, we leverage our meteorological 
knowledge to provide the k-means algorithm with inputs in order to identify cloud regimes and to 
provide the ANNs with predictors for predicting solar irradiance. Based on that previous work 
(McCandless et al. 2016a), variables used as inputs for the k-means algorithm include the cloud 
cover squared, averaged over the three nearest METAR sites, and the standard deviation of the 
cloud cover for the three nearest METAR sites, so as to weight higher regional cloud cover values 
and to quantify the regional solar irradiance variability. Another predictor, dewpoint depression, 
defined as the difference between the temperature and the dewpoint temperature, quantifies the 
nearness to saturation of the atmosphere at the surface. This derived predictor, and the cloud cover 
squared predictor, are averaged over the three METAR sites based on a sensitivity study that 
showed no improvement by including the predictor for each site independently. For the SMUD 
region, we derive two additional predictors by computing the spatial average and standard 
deviation of the clearness index at the previous 15-min interval over the remaining sites. These 
predictors are computed to quantify the regional distribution of cloud cover as measured by the 
eight solar irradiance observation sites.  

2.2.7 Research Results for StatCast 

We compare the various methods of prediction in a systematic manner. We first describe the 
specific implementation of each method compared, including applying an ANN without regime 
dependence. 

2.2.7.1 Baseline: StatCast-Persistence 

We use clearness index persistence (“smart persistence”) as the baseline prediction technique for 
comparison. It inherently corrects for changes in solar elevation with time and can be easily 
converted back to GHI for operations if the clearness index forecast is multiplied by the top-of-
atmosphere GHI. This baseline technique uses the last available observation of the clearness index 
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(i.e., 15-min average) as the prediction for subsequent times. For locations with either generally 
clear conditions or steady cloud cover, this technique is difficult to improve upon. In contrast, 
when mixed or variable clouds are observed, the clearness index persistence technique performs 
poorly.  

2.2.7.2 Artificial Neural Network 

The ANN is our choice for a nonlinear AI prediction technique because an ANN does not require 
a priori knowledge of potentially complex relationships between the predictors and the predictand. 
ANNs replicate how the human learning process works, and when given a sufficiently large set of 
training data, ANNs can model complex, nonlinear, relationships between the predictors and the 
predictand (Lippmann 1987). The ANN used here is a feed-forward neural network trained by a 
back-propagation algorithm (Reed 1998), which is commonly referred to as a multi-layer 
perceptron (Rosenblatt 1958). The specific neural network module used in this study is the newff 
model in the Neurolab python library (https://pythonhosted.org/neurolab/). The ANN used here 
has three layers: the input layer that consists of the predictors, the hidden layer that consists of 
tunable neurons, and the output layer that computes the final prediction. The actual processing is 
done by the neurons in the hidden layer, each of which is a linear regression that is post-processed 
by a nonlinear sigmoid function so that all outputs are on a common finite scale. These neuron 
outputs are then merged by a final linear regression neuron to yield the ANN’s forecast. Each 
predictor of the input layer is connected to all neurons within the hidden layer, but the iterative 
training results in special weights for each neuron that together solve the different aspects of the 
problem.  

Varying the number of neurons in the hidden layer changes the complexity of the model. As more 
neurons are added, more complex nonlinear relationships between the predictors and the 
predictand can be modeled. This increase in complexity, however, increases the risk of over-fitting 
the training data and decreasing the performance of the model on the independent data. Moreover, 
as the number of training epochs (iterations) is increased, an overly complex ANN may begin to 
tune to the random noise in the training data as well as to the real relationships. Therefore, both 
the number of neurons of the hidden layer and the number of training epochs determine the ANN’s 
fit to the training and independent data. The goal of configuring the ANN is to find the best level 
of complexity, i.e., the number of hidden layer neurons, and the number of training epochs that 
model the true relationships in the training data and thus yield the lowest error on independent 
data. We held the learning rate (0.01) and weight decay (0.5) constant, as sensitivity studies (not 
shown) found these values to be best.  

We have a total of 42 predictors for the SMUD sites, which includes data from SMUD irradiance 
observation sites, METAR weather observation sites, GOES-East satellite data, and several 
derived predictors. A list of all predictors for the ANN is provided in Table 2-9. For the BNL 
locations, the predictors, “Kt Nearby Mean” and “Kt Nearby Variability (Stdev)” are not available 
because, unlike SMUD, the BNL data come from a single location.  

Table 2-9. List of predictors for the ANN model. The Kt Nearby Mean and Variability are marked with an asterisk 
because they are only available for the SMUD sites. 
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Solar Zenith 
Angle 

Satellite 
Measured 
Reflectance at 
3.75um 

Dewpoint at 
METAR Site 2 

Categorical 
Precipitatio
n at Site 3 

Kt Previous 
60-Min 

Kt 
Temporal 
Variability 
(Stdev) 

Satellite 
Derived Cloud 
Type 

Satellite 
Measured 
Temperature at 
11.0um 

Dewpoint at 
METAR Site 3 

QPF at 
METAR 
Site 1 

Kt Previous 
45-Min 

Most recent 
Kt Change 
(Kt Prev15 - 
Kt Prev30) 

Satellite 
Derived Cloud 
Fraction 

Satellite 
Measured 
Temperature at 
3.75um 

Cloud Cover at 
METAR Site 1 

QPF at 
METAR 
Site 2 

Kt Previous 
30-Min 

Kt Nearby 
Mean* 

Satellite 
Derived Cloud 
Top 
Temperature 

Temperature at 
METAR Site 1 

Cloud Cover at 
METAR Site 2 

QPF at 
METAR 
Site 3 

Kt Previous 
15-Min 

Kt Nearby 
Variability 
(Stdev)* 

Satellite 
Derived Cloud 
Optical Depth 

Temperature at 
METAR Site 2 

Cloud Cover at 
METAR Site 3 

Wind 
Speed at 
METAR 
Site 1 

Sine of the 
Julian Day 

Cloud Cover 
Variability 
(Stdev) 

Satellite 
Derived 
Hydrometeor 
Radius 

Temperature at 
METAR Site 3 

Categorical 
Precipitation at 
METAR Site 1 

Wind 
Speed at 
METAR 
Site 2 

Cosine of the 
Julian Day 

Cloud Cover 
Squared 

Satellite 
Measured 
Reflectance at 
650nm 

Dewpoint at 
METAR Site 1 

Categorical 
Precipitation at 
METAR Site 2 

Wind 
Speed at 
METAR 
Site 3 

Dewpoint 
Depression 
(METAR 
Sites 
Average) 

Kt Slope 

 

2.2.7.3 Regime-Dependent Artificial Neural Network Applications 

The goal of applying the ANN is to find the true relationship between the predictors and the 
predictand; therefore, we partition the dataset into cloud regime subsets in order to allow the ANN 
to find the simpler relationships applicable to each cloud regime rather than having to model both 
these relationships and regime identification with a single complex network. In order to improve 
the deterministic forecast, the regime identification technique must split regimes with different 
underlying forecast problems, each with different physical, and thus, statistical relationships, 
between predictors and predictand. Therefore, the regime classification method must capture 
differences that are directly related to short term irradiance forecasting, given the predictors 
available.  

Two regime-identification methods, which are named after the input data, RD-ANN-KtCC and 
RD-ANN-GKtCC, use a k-means clustering algorithm. The k-means clustering algorithm is 
explained in detail in McCandless et al. (2016a). For the RD-ANN-KtCC method, the inputs to the 
k-means clustering algorithm are the past irradiance (converted to Kt) observations and cloud 
cover observations from the METAR data. This method is tested to determine the predictive skill 
of an RD-ANN method using only surface observations.  
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For the RD-ANN-GKtCC method, the inputs to the k-means clustering algorithm are the past 
irradiance (converted to Kt) observations, cloud cover observations from the METAR data and 
variables from the GOES-East data. This method is tested to determine the predictive skill of an 
RD-ANN method using both surface observations and satellite data. In contrast, the RD-ANN-
GCT method, does not use the k-means algorithm to classify regimes, but rather uses the derived 
“cloud type” variable in the GOES-East data to separate regimes. This test will determine if off-
the-shelf cloud typing can compete with mission-specific cloud regime typing in solar forecasting.  

RD-ANN-KtCC 

The first regime-dependent method tested uses the original configuration of the regime-dependent 
ANN of McCandless et al. (2016a), hereafter referred to as RD-ANN-KtCC. This technique does 
not include any GOES-East data as either inputs to the k-means regime classification or as 
predictors for the ANN. Sensitivity studies in McCandless et al. (2016a), showed that the best 
inputs to the k-means clustering algorithm are the following: Kt average in the previous 15 
minutes, nearby Kt in the previous 15 minutes, standard deviation of the Kt in the previous 15 
minutes among the nearby sites, the most recent change in the Kt (Kt previous 15 min – Kt previous 
30 min), the slope of the Kt in the past hour, the standard deviation of the Kt over the previous 
hour, and standard deviation of the cloud cover. Because there are seven inputs into the k-means 
algorithm, there are therefore seven dimensions in the phase space of the k-means distance 
computation. These seven inputs provide the k-means algorithm with information that capture the 
meteorological state based on surface observations. Sensitivity studies indicate that the optimal 
number of regimes, k, was also seven. For the BNL site, only a single irradiance observation site 
was available; therefore, the RD-ANN-KtCC method does not include either the nearby Kt in the 
previous 15 minutes or the standard deviation of the Kt in the previous 15 minutes among the 
nearby sites. 

RD-ANN-GKtCC 

The RD-ANN-GKtCC method uses 16 inputs into the k-means clustering algorithm for the SMUD 
sites, which are shown in Table 2-10. Again, the multi-site inputs are unavailable for BNL; thus, 
the RD-ANN-GKtCC method does not include either the nearby Kt in the previous 15 minutes or 
the standard deviation of the Kt in the previous 15 minutes among the nearby sites. Because there 
are 16 inputs into the k-means algorithm, there are 16 dimensions in the phase space of the k-
means distance computation. These 16 inputs provide the k-means algorithm with information to 
capture the meteorological state given both surface irradiance and weather observations, as well 
as satellite-based data with careful consideration given to avoiding co-linearity. The inputs include 
all inputs used in RD-ANN-KtCC as well as additional variables from the GOES-East 
observations: cloud fraction, cloud top height, cloud optical depth, hydrometeor radius, reflectance 
at 6.5 um (i.e. wavelength for shortwave IR), reflectance at 3.75 um (i.e. wavelength for water 
vapor), temperature at 6.5 um and temperature at 3.75 um. 
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Table 2-10. List of inputs for the k-means algorithm in the RDANN-GKtCC configuration. The Kt Nearby Mean and 
Variability are marked with an asterisk because they are only available for the SMUD sites. 

Satellite Derived 
Cloud Fraction 

Satellite Measured 
Reflectance at 650nm Kt Previous 15-Min Kt Nearby Variability 

(Stdev)* 

Satellite Derived 
Cloud Top 

Temperature 

Satellite Measured 
Brightness 

Temperature at 
11.0um 

Kt Temporal 
Variability (Stdev) 

Cloud Cover 
Variability (Stdev) 

Satellite Derived 
Cloud Optical Depth 

Satellite Measured 
Reflectance at 3.75um 

Most recent Kt Change 
(Kt Prev15 - Kt 

Prev30) 
Cloud Cover Squared 

Satellite Derived 
Hydrometeor Radius 

Satellite Measured 
Brightness 

Temperature at 
3.75um 

Kt Nearby Mean* Kt Slope 

 

In order to match the level of complexity of the ANN with the number of training cases and 
complexity of relationships within each regime, we perform multiple sensitivity studies to 
determine the best number of training epochs and the best number of hidden layer neurons. We 
examine the mean absolute error (MAE) of the RD-ANN-GKtCC method on the sensitivity test 
cases for each lead-time. The MAE is calculated as 

 
𝑀𝑀𝑀𝑀𝑀𝑀 =  1

𝑛𝑛
 ∑ |(𝑜𝑜𝑜𝑜𝑜𝑜(𝑖𝑖) − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖)|𝑛𝑛

𝑖𝑖=1                             (2.9) 
 

where n is the number of instances in the testing data. We varied the number of training epochs 
(100, 250, 500 or 1000) and averaged the error over the regimes. The test was conducted separately 
for each lead time with the result for 180 minutes. The results indicate that the lowest error on the 
sensitivity test cases, and thus the best number of training epochs for the ANN is 500. The same 
result (not shown) was obtained for the other lead times. 

After the sensitivity study determined the number of training epochs, the next step in configuring 
the RD-ANN-GKtCC model was to determine the best number of neurons and the best number of 
regimes for each forecast lead time and forecast location. We performed a sensitivity study with 
5, 10, 15, and 20 neurons in the hidden layer and k ranging from two to nine for each forecast lead 
time. The best combinations (in terms of the lowest MAE on the sensitivity test datasets) are shown 
in Table 2-11. For the SMUD sites, the best k is two for the two shorter lead-times and three for 
the two longer lead-times. For the BNL location, the best k is two for all forecast lead times. The 
best number of neurons varies among the different locations and lead times; however, the results 
showed relatively minor differences between different numbers of neurons, which indicates that 
the increase in forecast power nearly balances the increase in over-fitting for a range of model 
complexities around the best configuration.  
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Table 2-11. Best number of regimes, K, and number of neurons in the hidden layer for all forecast lead-times at both 
SMUD and BNL as determined by the lowest error on the sensitivity test set. 

 SMUD BNL 
 K Nodes K Nodes 
15-Min 2 5 2 10 
60-Min 2 15 2 15 
120-Min 3 20 2 5 
180-Min 3 15 2 10 

 

RD-ANN-GCT 

The third method of regime-dependent prediction uses the “cloud type” variable in the GOES-East 
data to determine regimes; therefore, this technique is named RD-ANN-GCT. Each cloud type has 
a separate ANN trained for that cloud type. There are seven cloud types present in the data: fog, 
liquid water clouds, supercooled water clouds, opaque ice clouds, cirrus clouds, overlapping 
clouds and overshooting clouds, in addition to the cases identified as clear due to the absence of 
derived satellite variables. 

2.2.8 Results for StatCast 

2.2.8.1 Comparison of Persistence, Cubist, and Regime Dependent Models 

A first basic comparison considers clearness index persistence and two nonlinear prediction 
techniques: an artificial neural network and the Cubist model regression tree. In order to quantify 
the predictive skill in different cloud regimes before applying the k-means clustering technique, 
the data were divided into clear days (clearness index greater than 0.6) and cloudy days (clearness 
index less than 0.6). A ten-fold cross validation was performed to analyze the prediction 
techniques. The mean absolute error for clear days at all forecast lead times is shown in Figure 
2-33 while the mean absolute error for cloudy days at all forecast lead times is shown in Figure 
2-34. The results for clear days show the errors from the Cubist model are lower than the ANN or 
the clearness index persistence. Similarly, for the cloudy days, the Cubist model has the lowest 
results at all forecast lead times. The MAE for the Cubist model on the clear days ranges from 25 
W m-2 at 15-minute lead time to 50 W m-2 at 180-minute lead time while the errors for the cloudy 
days are higher with a range from about 50 W m-2 at 15-minute lead time to 75 W m-2 at 180-
minute lead time.  

The baseline short-term forecasting technique is the clearness index persistence; thus, the percent 
improvement quantifies the improvement in forecasting error with the model tree compared to 
clearness index persistence. These results are plotted in Figure 2-35, with cloudy days displayed 
in blue and clear days displayed in red. The percent improvement for cloudy days ranged from 
about 10% to over 50% as lead time increases from 15 minutes to 180 minutes. This can be 
explained by the fact that the clearness index persistence is difficult to improve upon when the 
cloud cover is steady. The results for the clear days indicate the impressive predictive skill of the 
model tree compared to the clearness index persistence, with percent improvement between 25% 
and 55%.  
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Figure 2-33. MAE for the KT persistence, ANN, and Cubist model regression tree for all forecast lead times on 

clear days. The Cubist regression tree has the lowest errors for all lead times. 

 

 
Figure 2-34. MAE for the KT persistence, ANN, and Cubist model regression tree for all forecast lead times on 

clear days. The Cubist model regression tree has the lowest errors for all lead times. 
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Figure 2-35. Percent improvement for the model tree's errors compared to the clearness index persistence. The 

results are shown for cloudy days (blue) and for clear days (red) at all forecast lead times. 

2.2.8.2 Comparison of Regime Specific Methods with Baselines 

We now compare the techniques that explicitly split the regimes with the baselines of StatCast-
Persistence and an ANN trained without explicit regime separation. The data are initially split 
based on whether there are derived data in the GOES-East observations. Derived data are only 
available when the measured temperature and reflectance data indicate clouds are present. If an 
instance is identified as clear based on the GOES-East data, then an ANN trained on only those 
cases is used to predict the clearness index. Otherwise, the RD-ANN models and an ANN without 
regime identification are used to predict the clearness index. 

Sacramento Sites 

The results for the GOES-East defined clear cases are shown in Table 2-12 for all forecast lead 
times for the SMUD location. They indicate that the ANN improves upon the clearness index 
persistence method at the 60-, 120-, and 180-min forecast lead times. At the 15-min forecast lead-
time, however, the error is nearly double that of the clearness index persistence forecast and this 
is likely a case of over-fitting the training data. At this forecast lead time, the magnitude of the 
irradiance is relatively consistent unless a cloud advects or develops over the observation site. 
Because these instances are rare when GOES-East data determines it to be clear, the ANN likely 
over-fits those uncommon cases and thus hurts the overall performance of the model.  
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Table 2-12. Comparison of MAE for the clearness index persistence and the ANN, CLEAR model for all forecast 
lead-times for the SMUD site. 

 Kt Persistence ANN - Clear 

15-min 0.017 0.035 

60-min 0.036 0.028 

120-min 0.055 0.041 

180-Min 0.082 0.057 

 

Next, all of the RD-ANN methods were compared to both the ANN without regime identification 
(ANN-ALL) and the clearness index persistence for all the cases labeled other than clear by the 
GOES-East data. These MAE results are plotted in Figure 2-36 for all forecast lead times. As 
expected, the forecast error increases as the forecast lead time increases. The only method that 
generally performs worse than clearness index persistence is the RD-ANN-GCT method that uses 
the GOES-East derived cloud types as the regime classification method. At the 15-min lead time, 
the RD-ANN-KtCC, RD-ANN-GKtCC, ANN-ALL, and clearness index persistence all show 
similar errors. However, at the 60-minute and longer lead times, the RD-ANN-KtCC, RD-ANN-
GKtCC, and ANN-ALL all show improvement over the clearness index persistence, as shown by 
the larger MAE of the clearness index forecasts. The method that generally performs best is RD-
ANN-GKtCC method, which exploits the GOES-East data in both the k-means clustering and 
ANN.  

 

 
Figure 2-36. MAE as a function of lead time for all methods of the satellite determined cloudy instances for the 

SMUD site. The method that performs best in the majority of the forecast lead times is the RD-ANN-GKtCC method. 
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To quantify the forecast skill improvement with the regime-dependent methods, we compute the 
percent improvement over our baseline clearness index persistence technique. The percent 
improvement over clearness index persistence for the forecasts at the SMUD sites is shown in 
Figure 2-37. At the 15-min lead time, all of the methods closely mimic clearness index persistence, 
except for the RD-ANN-GCT method. At this lead-time only the RD-ANN-GKtCC method 
improves over the clearness index persistence, by 1%. In contrast, at the 60-, 120-, and 180-min 
lead-times, most of the RD-ANN methods show between 10% and 28% improvement over the 
clearness index persistence method. The RD-ANN-GOES model shows the worst performance 
except at the 180-minute lead-time when it begins to improve over the clearness index persistence. 
This poor performance is likely due to the cloud type classification because there are likely cases 
of misclassification by the GOES East system, and also there are cloud regimes with small data 
subset sizes, and thus, potentially ANN over-fitting on those regimes. At the 60-, 120-, and 180-
min lead times, the RD-ANN-GKtCC method shows 21.0%, 26.4%, and 27.4% improvement over 
the clearness index persistence. The RD-ANN-GKtCC method is best at all lead times except at 
120 minutes where the RD-ANN-KtCC produces a slightly better 26.6% improvement over 
clearness index persistence. These results demonstrate that the RD-ANN methods are able to 
improve substantially over clearness index persistence at 60-, 120- and 180-min lead times; 
however, the cloud regime classification makes a considerable impact on the overall performance 
of the models. 

 

 
Figure 2-37. Percent improvement over the clearness index persistence forecasts for all methods on the satellite 

determined cloudy instances. 

Long Island Solar Farm 

While the SMUD dataset provides a substantial amount of data for training, sensitivity testing and 
independent verification, it is important to analyze how our complex regime-dependent model 
performs when trained with a smaller dataset. Doing so quantifies the value of obtaining larger, 
and thus more expensive, training datasets. In addition to redeveloping the same RD-ANN 
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methods using the BNL dataset, we also trained the RD-ANN-GKtCC model on the SMUD dataset 
and applied it to the BNL dataset (RD-ANN-SMUD) in order to determine how a general model 
trained at one site performs at a different site. The MAE for each method on the BNL test data is 
shown in Figure 2-38 for all forecast lead-times. These results indicate that the clearness index 
persistence method has lower error than all ANN methods for BNL. The results also indicate that, 
similar to the results for the SMUD sites, the RD-ANN-GCT model is the worst-performing model. 
At the 15-min and 60-min lead times, the best regime-dependent model is the method trained at 
SMUD. This highlights the importance of numerous and applicable training data, especially 
considering that the geostationary satellite data are distorted in different ways for locations in 
California versus New York, negatively impacting the forecast performance of a model trained at 
one location and applied to the other. The amount of data available from BNL to train the models 
at that site is likely too little given the number of predictors and the model complexity. With 40 
predictors provided to the ANN, it may be too complex to avoid over-fitting given a training 
dataset of a maximum (if no regime classification is done) of 309 instances. Future work will 
examine how to properly down-select to the appropriate number of predictors and model 
complexity in order to capture the true predictive relationships among the predictors in a limited 
dataset. 

 

 
Figure 2-38. Results for all methods on the satellite determined cloudy instances for the BNL forecast site. The 
method that performs best in the majority of the forecast lead times is the clearness index persistence method. 

Variability Prediction 

Although the deterministic forecast skill is of primary interest to utility companies and systems 
operators, it is also valuable to predict irradiance variability (Bartholomy 2014; McCandless et al. 
2015). Variability is important because the utility companies and systems operators need to 
allocate adequate resources to deal with variations that cannot be deterministically predicted. Here, 
we compute the irradiance variability as the standard deviation of the clearness index over the 
following three hours (i.e., the standard deviation of twelve 15-min average clearness index 
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values). We test the variability prediction for SMUD because the deterministic prediction results 
showed that the dataset has ample data for training and testing. As our baseline forecast, we 
compute the standard deviation of the 15-minute average clearness index values over the prior 
hour. Essentially, this clearness index persistence forecast predicts that variability will remain the 
same for the following three hours. We test this baseline technique versus an ANN trained without 
regime identification, and against a new version of the RD-ANN-GKtCC method that uses the 
same inputs and predictors as the deterministic irradiance forecast methodology, but is now trained 
to predict the three-hour clearness index variability. The results for the variability prediction 
displayed in Table 2-13 reveal that the lowest MAE comes from the RD-ANN-GKtCC prediction 
method. The RD-ANN-GKtCC method shows 18.6% improvement over the clearness index 
persistence forecast of the expected irradiance variability. The clearness index persistence, ANN-
ALL and RD-ANN-GKtCC methods all show substantially lower errors than the average value of 
the clearness index variability, which was computed to be 0.092 for the test dataset.  

Table 2-13. List of the MAEs for predicting the clearness index variability with the clearness index persistence, 
ANN-ALL, and RD-ANN-GKtCC methods trained to predict the variability for the SMUD sites. 

 MAE Percent Improvement 
Kt Persistence 0.068 N/A 
ANN-All 0.059 13.7% 
RD-ANN-GKtCC 0.058 18.6% 

 

2.2.9 Advances Due to this Project to Short-Range Statistical Forecasting 

This work has shown that using multiple inputs into statistical techniques improves deterministic 
solar irradiance predictions as well as spatial and temporal solar irradiance variability predictions. 
This work sought to improve two major facets of short-range solar irradiance forecasting via 
regime-dependent statistical forecasting: deterministic irradiance forecast accuracy and irradiance 
variability estimates. We first classify cloud regimes with a k-means algorithm and then apply 
ANNs to each regime to produce a more accurate GHI forecast with variability estimates. The k-
means algorithm statistically classifies the cloud regime based on surface weather and irradiance 
observations. This approach parallels that of Greybush et al. (2008), who classified weather 
regimes with principal component analysis (PCA) in order to apply regime-dependent optimal 
weights to ensemble temperature forecasts. After k-means clustering, ANNs are implemented for 
each weather regime independently with the intention of modeling the inherent predictability of 
each weather regime, and thus, the different causal relationships for each regime between 
predictors and predictand.  

We utilize surface weather observations, solar irradiance observations, and GOES-East satellite 
data as inputs and predictors into regime-dependent techniques that first identify cloud regimes 
before fitting an ANN to predict clearness index. This approach allows each ANN to focus on the 
forecast mission for a specific cloud type. We find that a k-means cluster-based ANN method (RD-
ANN GKtCC) improves upon the forecasting performance of not only the baseline clearness index 
persistence, but also improves upon the forecasting performance of a global ANN for lead-times 
of 60, 120, and 180 min. At the 15-min forecast lead time, all RD-ANN methods mimicked the 
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clearness index persistence, with the RD-ANN-GKtCC method managing to show a 1% gain in 
forecasting performance over clearness index persistence.  

The RD-ANN methods not only showed improved performance for deterministic clearness index 
predictions, but also for predicting clearness index variability. A new version of the RD-ANN-
GKtCC model trained to predict the variability of the clearness index over the next three hours 
showed substantial forecast error reduction compared to either using a variability persistence 
method or a global ANN. Thus, the RD-ANN-GKtCC model is able to improve the prediction of 
the deterministic irradiance and its variability for short-range lead-times, given sufficient training 
data. 

Although the RD-ANN methods show substantial performance gain for the Sacramento, CA, 
(SMUD) sites that had a large training dataset, when the RD-ANN methods were trained to predict 
for a site on Long Island, NY, (BNL) with its small training dataset, the complex models did not 
perform well on the independent test dataset. In order to improve the forecasting methods at a site 
with a small amount of training data, the RD-ANN methods likely need be tuned with a smaller 
predictor set and a simpler configuration to allow the method to model the true predictive 
relationships among the predictors. The true predictive relationships in a small dataset are likely 
limited; therefore, future work can examine automatic ways of configuring RD-ANN systems 
depending on the amount of training data and number of available predictors. A simpler 
configuration with fewer predictors could potentially avoid the problem of over-fitting datasets 
too small (i.e. BNL) for using nonlinear models. Where insufficient data are available to apply the 
regime-dependent methods, the Cubist model regression tree performs quite well and is broadly 
applicable. 

Of the three RD-ANN methods tested, the method that performed worst used a regime 
classification based on the cloud type derived variable in the GOES-East data. This outcome was 
likely due to a combination of multiple problems and so yields several ideas for future work. First, 
the GOES-East algorithm derives cloud types based only on the satellite measured values. Our 
ANN models are also provided predictors from surface weather observations and surface 
irradiance observations. Therefore, the RD-ANN methods that use a combination of the available 
data are more likely to capture clusters that represent real predictive relationships, which the ANN 
is able to model. The forecast error dependence on available predictors could be examined in future 
work by testing the forecasting skill of the RD-ANNs if the regime classification versions are the 
same, but the ANNs are only provided the GOES-East measured variables. Lastly, some of 
the cloud types are uncommon in the data, resulting in small training data subsets, and thus, giving 
the ANN model a higher likelihood of over-fitting the available training data. 

Although the complex RD-ANN models have shown impressive forecast improvements for the 
SMUD sites, the clearness index persistence method still performs best when the dataset is too 
small to effectively train an ANN. Future work will look to quantify the amount of data required 
for the RD-ANN-GKtCC method to outperform a persistence-based approach.  

2.2.10 Summary of Contributions to Short-Range Statistical Forecasting  

This work has advanced the science of short-range statistical prediction of solar irradiance and its 
variability. Through understanding the variability by accomplishing statistical analysis, we 
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identified the efficacy of separating data into cloud regimes to build AI forecast models for each 
regime separately. The cubist model accomplishes this intrinsically and showed success at both 
improving the forecast beyond a smart persistence and producing a prediction of variability. The 
regime dependent versions of StatCast explicitly predict separately for each regime. We find added 
value by identifying the regime when sufficient data exists. With a limited amount of data, 
however, the value of regime identification decreases. As shown in chapter 5, StatCast is often the 
best performing component of the system on the short timeframes. 

2.2.11 Publications from this work include: 
Thesis 

McCandless, T.C., 2015: Artificial Intelligence Techniques for Short-Range Solar Irradiance Prediction, 
Dissertation in Meteorology, The Pennsylvania State University. 

Journal Papers 

McCandless, T.C., G.S. Young, S.E. Haupt, and L.M Hinkelman, 2016b:  Regime-Dependent Short-
Range Solar Irradiance Forecasting, submitted to Journal of Applied Meteorology and Climatology, 
in revision. 

McCandless, T.C., S.E. Haupt, and G.S. Young, 2016a:  A Regime-Dependent Artificial Neural Network 
Technique for Short-Range Solar Irradiance Forecasting, Applied Energy, 89, 351-359. 

McCandless, T.C., S.E. Haupt, and G.S. Young, 2015: A Model Tree Approach to Forecasting Solar 
Irradiance Variability, Solar Energy, 120, 514-524. DOI:10.1016/j.solener.2015.07.0200038-092X 

Conference and Workshop Presentations (presenter in Bold) 

Gagne, D.J., Haupt, S.E., Linden, S., Williams, J.K., McGovern, A., Wiener, G., Lee, J.A., and T.C. 
McCandless, 2015: Scaling Machine Learning Models to Produce High Resolution Gridded Solar 
Power Forecasts. 13th Conference on Artificial Intelligence: The Last Mile: Methods and 
Technologies for Delivering Custom Weather, Water, and Climate Information to Everyone in the 
World, Phoenix, AZ, Amer. Meteor. Soc. T.J.1.1 

Hinkelman, L. M., N. Schaeffer, and T. P. Ackerman, 2015: The character and variability of solar 
irradiance across the Pacific Northwest American Geophysical Union Fall Meeting, San Francisco, 
CA. 

Hinkelman, L. M., 2014: Statistics of solar resource variability on short time scales, A Public-Private-
Academic Partnership to Advance Solar Power Forecasting Project Workshop, Boulder, CO. 

McCandless, T.C., S.E. Haupt, and G.S. Young, 2016: A Regime-Dependent Neural Network Approach 
to Short-Range Solar Irradiance Prediction Using Surface Observations and Satellite Data, Joint 
Session between 14th Conference on Artificial and Computational Intelligence and its Applications 
to the Environmental Sciences and Seventh Conference on Weather, Climate, Water, and the New 
Energy Economy, AMS Annual Meeting, New Orleans, LA, Jan. 12. 

McCandless, T.C., Haupt, S.E., Young, G.S., 2015: A Bayesian Approach to Statistical Short-Term 
Solar Irradiance Forecasting. International Conference on Energy and Meteorology, Boulder, CO, 
June 23. 

McCandless, T.C., S.E. Haupt, G.S. Young, and A.J. Annunzio, 2015: A Regime-Dependent Bayesian 
Approach to Short-Term Solar Irradiance Forecasts, Joint Session between Sixth Conference on 
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Weather, Climate, and the New Energy Economy and 13th Conference on Artificial Intelligence, 
AMS Annual Meeting, Phoenix, AZ, Jan. 7. 

McCandless, T.C., S. E. Haupt and G. S. Young, 2014: Short Term Solar Radiation Forecasts Using 
Weather Regime Dependent Artificial Intelligence Techniques, Joint Session between the 12th 
Conference on Artificial and Computational Intelligence and its Applications to the Environmental 
Sciences and the Fifth Conference on Weather, Climate, and the New Energy Economy, AMS 
Annual Meeting, Atlanta, GA, Feb. 5.  

McCandless, T. C., 2014: Sun4Cast Solar Irradiance Prediction and Statistical Short-term Solar Irradiance 
Prediction. Seminar at Aerospace Corporation, Pasadena, CA, October 25. Pearson, J.M., Haupt, 
S.E., Jensen, T.L., Burghardt, C., McCandless, T.C., Brummet, T., and S. Dettling, 2015: Predicting 
Distributed Solar Power Production for Utilities. Sixth Conference on Weather, Climate, and the 
New Energy Economy: Short-Range Forecasting Modeling for Solar Electric Generation, Phoenix, 
AZ, Amer. Meteor. Soc. 4.2. 

Schaeffer, N., L. M. Hinkelman, and T. P. Ackerman, 2016: Relating solar irradiance variations and 
weather across the Pacific Northwest, AMS 7th Conference on Weather, Climate, and the New 
Energy Economy, January 2016, New Orleans, LA. 

Sengupta, M. and L. M. Hinkelman, 2014: Temporal variability of surface solar irradiance as a function 
of satellite-retrieved cloud properties, American Geophysical Union Fall Meeting  San Francisco, 
CA. 

2.3 CIRACAST 

Team members at CIRA, led by Matthew Rogers, Steven Miller, and John Haynes, built and 
improved the CIRACast system, which is described below. 

2.3.1 Motivation 

Real-time forecasts of solar ramp events are a critical component of assuring high predictability of 
power output from PV and CSP plants. As part of the current SunShot initiative, the CIRA team 
has developed an operational, satellite-derived forecast for predicting global horizontal irradiance 
(GHI) on a timescale of 0-3 hours. The CIRACast method utilizes real-time retrieved cloud 
properties from the Pathfinder Atmospheres Extended (PATMOS-x) retrieval suite from GOES 
observations, projected forward in time using steering winds derived from numerical weather 
prediction (NWP) output, combined with a radiative transfer code to compute surface GHI, 
accounting for parallax, cloud shadow information (computed from sun angle and cloud-top height 
information) and changes in steering wind magnitude and direction. 

Satellite-derived advection forecasts provide one method of addressing potential shortcomings in 
NWP-generated insolation forecasts, as issues with initialization of the cloud field within the 
model, along with model spin-up contribute both to lag time and potentially large errors in 
forecasting cloud shadows. As one component of the blended forecast model, CIRACast utilizes 
direct observation of the initial cloud field to develop a low-lag, accurate forecast with an intended 
peak of utility at the 0 to 1-h timeframe, reaching to the 0 to 3-h timeframe for ideal cases.  
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2.3.2 Literature Review 

The utility of satellite-derived advection schemes has been demonstrated as filling a role between 
short-term (0-30 min) sky-imaging methods (Peng et al. 2015; Huang et al. 2013; Chow et al. 
2011) and NWP-based methods (James et al. 2015.) Validation of satellite-derived advection 
forecasts (Stein et al. 2010; Miller et al. 2012; Perez et al. 2010) showcase the utility of advection-
derived methods in the 0-1-hour timeframe. Variability in forecasted irradiance fields using 
satellite-derived methods can depend on many factors, including advective and cloud identification 
issues (Rogers et al. 2015), biasing in radiative transfer codes used (Stackhouse et al. 2008), and 
cloud evolution and weather-related issues (Stein et al. 2010.)   

The CIRACast algorithm, described by Miller et al. (2012) and Rogers et al. (2015), seeks to 
maximize forecast accuracy by utilizing a ‘best of both worlds’ approach, combining the accuracy 
of cloud field identification from geostationary satellite observations with the generally well-
forecasted wind guidance from NWP models. Results from the continued development of the 
CIRACast algorithm under this project will be described briefly in this report and in a forthcoming 
publication (Miller et al. 2016).  

2.3.3 Impact of CIRACast on the State-of-the-art 

An overview of the current state-of-the-art for advection-derived solar forecasting is provided by 
Miller et al. (2013), including details of physically-based satellite methods for short-term 
forecasting, provided in chapter 3 of that document by Miller et al. (2013). For the purposes of this 
project, the forecast window targeted by the exclusively satellite-based method falls naturally 
between the surface-based all-sky-camera techniques (which see the clouds in the field of regard, 
and can provide useful predictions of shadow crossings with the 0-30-minute timeframe) and the 
NWP methods that capture the dynamics responsible for cloud formation but face challenges in 
capturing detailed cloud distributions.  

Our satellite-based / model-fusion approach to addressing this challenging problem comprises a 
novel attempt to leverage the best of both worlds. Satellite-based cloud location and properties are 
coupled with the model’s inherent ability to define the dynamic, three-dimensional flow patterns 
in which these clouds propagate in a way that is far superior to imposing a fixed- direction vector 
wind. The forecasts operate within a temporal window (up to ~2 hr) where the benefits of 
deterministic cloud placement and realistic model advection are perceived to overcome the 
limiting assumptions of non-evolving cloud properties (including microphysics, 
growth/dissipation). We utilize high spatial/temporal resolution satellite retrievals of cloud mask, 
type, and optical properties (from the GOES satellites) to improve the model analysis.  

The satellite-based technique utilized in this program has been some years in the making. We 
leverage a capability to process GOES cloud property retrievals based on NOAA/NESDIS 
algorithms and locally-produced ancillary datasets in real time. We apply these retrievals to the 
very short-term solar forecasting problem. Novel elements of this technique that represent a move 
toward a more physical treatment of the satellite observations and which, therefore, advance the 
state-of-the-art for satellite-derived advection forecasts, are:  

• Deriving cloud properties and surface irradiance from NOAA’s operational codes  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• Accounting for satellite viewing parallax via GOES cloud height retrievals, which can 
result   in significant cloud pixel displacements (particularly for high/deep clouds, which 

can lead to 10s of km, or multi-pixel, shifts)    
• Accounting for the solar geometry (shadow-casting, particularly for high clouds and 

lower   solar elevation angles, again 10s of km shifts)    

• Taking advantage of differential steering effects of a divergent wind field on cloud  
trajectories, using GOES cloud height information, which allows for capture of 
cyclonic/anticyclonic flow in a way that is not possible from cloud motion vectors or 
single vector wind methods.    

2.3.4 Advances Made 

The components of the satellite-derived forecast algorithm were largely completed prior to the 
start date of the current project; advances made on the CIRACast algorithm under this project are 
the result of continued refinement and evaluation of forecast accuracy. During the project, nearly 
three complete years of forecasts over the three zones have been compiled, with opportunities to 
validate the forecast against surface observations of GHI from partner sites, including the SMUD, 
Southern California Edison, and Xcel Energy, as well as from the NOAA SURFRAD network.  

Evaluation of forecast accuracy against SURFRAD observations for GOES-West-derived 
forecasts identified key sources of error leading to improvements in the CIRACast model; 
specifically, identification of improper advection of stationary cloud features (e.g., offshore marine 
stratocumulus, mountain wave clouds, etc.) led to minor improvements of the group-advection 
algorithm and initial development of a blended cloud-motion-vector and NWP advection product. 
During the course of the project, forecast accuracy, in terms of relative MAE, improved to meet 
target goals in many of the forecast areas, and improved by a large margin over all forecast areas.  

Additionally, elements of the CIRACast algorithm were adapted to other components of the 
blended forecast algorithm. These components, which serve as deliverables for the project, include 
the adaptation of the shadow-casting and parallax correction components of the satellite algorithm, 
which, respectively, compute and correct for the location of cloud shadows derived from retrieved 
cloud-top properties and solar geometry, and the satellite geometry of observation. These two 
components were provided as source code to the WRF-Solar™ team and integrated successfully 
into that component’s forecast ability. Additionally, CIRACast was adapted to work within the 
larger DICast® forecasting system, making the algorithm more readily ingestible by various 
forecast sources. Graphing and imagery code to aid in the analysis of satellite-derived forecasts 
were also developed during the course of the project.  

As detailed previously, it was discovered during the project that the largest source of error in the 
CIRACast product was the incorrect advection of stationary cloud features in the advection 
scheme. For locations in coastal California, for example, the ubiquitous marine stratocumulus 
found offshore, which typically recedes seaward during the late morning, was often ‘picked up’ 
by onshore winds as diagnosed by the NWP guidance, and brought onshore, leading to significant 
over-forecasting of cloud ramp events for these coastal locations. Modifications to the cloud 
grouping algorithm that selected the model level used for advective winds based on cloud-top 



The Sun4Cast Solar Power Forecasting System   

 

97 
 

properties were made, allowing for lower-level winds to provide guidance for cloud groups, 
ameliorated the situation somewhat, improving forecast accuracy for these cloud systems.  

To further improve accuracy, work was begun on a blended forecast wind guidance, utilizing 
cloud-motion vector (CMV) winds in concert with NWP guidance to identify stationary cloud 
features. As CMV wind products are designed to identify significant wind features, it was found 
late in the project that stationary cloud features were often filtered out from the CMV analysis, 
complicating the ability to identify and utilize CMV-derived wind fields using off-the-shelf CMV 
analyses. Continued work on identification and quantification of near-stationary wind vectors 
using satellite observations, to be used in concert with NWP guidance to improve cloud advection, 
will continue outside of the scope of this project.  

2.3.5 Initial Evaluations of CIRACast 

As detailed previously, full forecast runs over the forecast domains extend from January 2014 to 
the present, with case runs extending back to March 2013. During that time, validation of the 
forecast algorithm was performed using primarily SURFRAD observations; extensive evaluation 
using the Desert Rock, NV, and Table Mountain, CO, SURFRAD sites were used to guide 
development of the algorithm.  

Figure 2-39 and Figure 2-40 show scatter plots of forecasted vs. observed GHI for these 
SURFRAD locations, for 0-1 hour forecasts made during the forecast period of January-December 
2014. As can be seen, general agreement between CIRACast and surface observations exist, with 
greater accuracy seen in the Desert Rock, NV, location. Errors in the Table Mountain, CO, location 
are somewhat higher due to the increased amount of cloud evolution seen over the Rocky 
Mountains in the 0-1 hour forecast period and the presence of stationary wave clouds often 
incorrectly advected over the Table Mountain site.  

As computed, relative MAE values for the sites were 9.6% for the Desert Rock, NV, site and 
21.8% for the Table Mountain, CO, site. Goals set by the project were relative MAE values under 
10% for ‘simple’ sites, where significant cloud evolution and other confounding factors were 
minimal (such as the Desert Rock location), and under 20% for ‘complex’ sites (such as Table 
Mountain location.)  CIRACast managed to meet the project goal for ‘simple’ sites, and was able 
to greatly improve forecast accuracy to come within approximately 2% of meeting target goals; 
continued improvement of the algorithm in identifying stationary cloud features and making 
appropriate modifications to the advective winds used in the algorithm would be expected to bring 
this error down to well below the error target.  
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Figure 2-39. Scatter plot of forecasted GHI vs. observed GHI for the Desert Rock, NV, SURFRAD site. Forecasts 

are for the period between January and December 2014. Relative MAE for the period is 9.6%. 
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Figure 2-40. As with Figure 2-39, but for Table Mountain, CO. Relative MAE for the period is 21.8%. 

2.3.6 Summary of Contribution 

During the course of the project, CIRACast offered a stable, operational short-term forecast 
capability for the blended forecast product. As one of the first components of the project to become 
operational, CIRACast provided initial evaluation of the capabilities of the blended forecasts 
product and allowed for further development of the project goals, with regard to power generation 
forecasts and evaluation of project metrics. As the project evolved, continued modification and 
evaluation of CIRACast resulted in a state-of-the-art satellite-derived forecast mechanism, leading 
to several key presentations and publications.  
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Continued development of satellite-derived forecast mechanisms is expected to provide value to 
several fields, including municipal utility power generation and mobile and battlefield power 
generation systems, as well as continued refinement of satellite retrievals of GHI, to include 
enhanced methods to retrieve and account for the contribution of dust and aerosol impacts on GHI 
retrievals. Improvements in assessing advective guidance winds will further improve the accuracy 
of satellite-derived advection methods; using these improvements in the framework of an under-
development probabilistic forecast method will further the efficacy of low-lag operational satellite-
derived forecast products for power generation.  

List of publications and presentations 

Miller, S.D., A.K. Heidinger, and M. Sengupta, 2013: Physically-Based Satellite Methods. Chapter 3, 
Solar Energy Forecasting and Resource Assessment, J. Kleissl, Ed. ISBN 9780123971777 

Miller, S.D., M.A. Rogers, A.K. Heidinger, I. Laszlo, and M. Sengupta, 2012: Cloud Advection Schemes 
for Short-Term Satellite-Based Insolation Forecasts. p 1963-1967, World Renewable Energy Forum 
2012, C. Fellows, Ed., American Solar Energy Society, Denver, CO.  

Rogers, M.A., S.D. Miller, J.M. Haynes, A. Heidinger, S.E. Haupt, and M. Sengupta, 2015: 
Improvements in Satellite-Derived Short Term Insolation Forecasting: Statistical Comparisons, 
Challenges for Advection-Based Forecasts, and New Techniques. Presentation 6.4, Sixth 
Conference on Weather, Climate, and the New Energy Economy, AMS 2015 Annual Meeting, 
Phoenix, AZ.  

Rogers, M.A., S.D. Miller, J.M. Haynes, A. Heidinger, S. Benjamin, M. Sengupta, S.E. Haupt, and T. 
Auligne, 2013: Results from a Satellite-Derived Short-Term Insolation Forecast Technique: 
Comparison Against Surface Observations, NWP Predictions, and Challenges. Presentation A14E-
2, 2013 AGU Fall Meeting, San Francisco, CA.  

Miller, S.D., M.A. Rogers, J.M. Haynes, and M. Sengupta, 2016: A Satellite-Initialized Model-Advected 
Scheme for Short-Term Solar Energy Forecasting. In preparation for Solar Forecasting 2016.  

2.4 MADCAST 

Pedro Jiménez of NCAR led the work of bringing in MADCast to the Sun4Cast®  system. 

Multisensor Advection-Diffusion NowCast (MADCast) is a new model designed for the analysis 
and short-term forecasting of clouds (Auligné 2014a,b; Descombes et al. 2014). The following 
description is inspired by Descombes et al. (2014), where the interested reader is referred to for 
further technical details of MADCast. 

The cloud analysis is based on retrievals of multiple infrared (IR) sensors using the multivariate 
minimum residual (MMR) scheme (Auligné 2014a,b). MMR has been implemented in the 
Gridpoint Statistical Interpolation system (GSI; Kleist et al., 2009). GSI provides three-
dimensional cloud fields that are subsequently advected and diffused by a modified version of the 
Weather Research and Forecasting model (WRF; Skamarock et al. 2008). Finally, the predicted 
cloud field is used to diagnose the surface irradiances completing the short-term forecast. 
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The following sections describe the methodology involving a MADCast forecast (section 2.4.1), 
the configuration of the model for the quasi-operational forecast (section 3), and the advantages of 
MADCast with respect to a purely numerical weather prediction (NWP) forecast (section 4). 

2.4.1 Methodology 

A MADCast forecast involves three steps to 1) retrieve the cloud field, 2) predict the evolution of 
the clouds, and 3) estimate the surface irradiance. 

2.4.1.1 Cloud Fraction Retrieval 

The fundamental piece of the cloud retrieval process is the MMR scheme (Auligné 2014a,b). The 
MMR scheme has been implemented in the GSI data assimilation system. GSI produces the cloud 
analysis consisting in a three-dimensional cloud fraction. This cloud fraction retrieval is performed 
following these steps:  

• Calculate IR radiance using WRF and the Community Radiative Transfer Model (CRTM; 
Han et al. 2006) under the clear sky hypothesis. 

• Compute the departures between the satellite radiances and WRF for multiple channels 
sensitive to different altitudes in the atmosphere. 

• Apply the MMR scheme to the departures to solve a variational problem (similar to a 1D-
Var approach) in order to retrieve a cloud fraction profile from the satellite fields of view. 

• Interpolate the cloud fraction profiles from the satellite fields-of-view to the model grid 
points. Specific procedures are used to optimally combine the information of sounders and 
imagers in order to exploit their different horizontal and vertical resolutions.  

The cloud retrieval has been implemented successfully for a number of IR instruments on board 
of polar-orbiting and geostationary platforms. These instruments include AIRS, IASI, CrIS, 
MODIS, GOES-Imager, GOES-Sounder, FY-2D VISSR, Himawari-7 MTSAT-2, METEOSAT-
10 SEVIRI. The AIRS, IASI and CrIS radiances are available from the National Centers for 
Environmental Prediction. The GOES and the MODIS radiances are available from the National 
Aeronautics and Space Administration. Additional radiances files are available at Air Force 557th 
Weather Wing (formerly known as the Air Force Weather Agency). 

A validation of the cloud retrieval results has been conducted with synthetic and real data, inter-
comparison between instruments, and independent observations such as CloudSat (Xu et al. 2014). 

2.4.1.2 Cloud Fraction Forecast 

The forecasting component of MADCast is incorporated in the WRF model. WRF provides the 
dynamical framework to transport and diffuse the clouds over time. The three-dimensional cloud 
fraction is treated as a tracer, and WRF is run without activating the majority of the physical 
packages. The forecast is therefore faster than a full physics run and provides acceptable results in 
situations without significant changes in the cloud thermo-dynamical structure. 

The outputs from the WRF forecasts are 1) the three-dimensional cloud fraction and 2) clear sky 
surface irradiance. 
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2.4.1.3 Irradiance Forecast 

The last step in the MADCast forecast is to combine the clear sky irradiances and the three-
dimensional cloud fraction from WRF into surface irradiances valid for all sky conditions. This 
requires some assumptions about how the clouds attenuate the shortwave radiation. In principle, 
clouds at different heights may have different hydrometeors and can lead to different cloud 
extinction properties. This makes estimation of the cloud extinction properties to be a challenge.  

As a starting point, we have assumed that the clouds are homogeneous and thus have the same 
extinction properties. This assumption simplifies the calculation of the surface irradiance. The 
irradiance is calculated by vertically integrating the cloud fraction into a two-dimensional cloud 
fraction, and then reducing the clear sky irradiance by the fraction of the cloud field. This method 
has shown acceptable performance in the irradiance forecast. 

2.4.2 Configuration of MADCast Quasi-Operational Forecast 

MADCast has been run quasi-operationally since September 2014 until March 2016. The model 
runs every hour and provides a six-hour forecast length over CONUS at a 9-km horizontal grid 
spacing. The system assimilates IR irradiances from a geostationary satellite (GOES-13/GOES-
East) and two instruments (AIRS and IASI) on board circumpolar satellites. The latency is 23 
minutes for synoptic and semi-synoptic hours and 12 minutes for the rest of the hours. 

 
Figure 2-41. Strategy used to provide the operational MADCast forecast. Two MADCast cycles are performed. The 

upper part corresponds with the MADCast operational forecast whereas the lower part with the near real-time 
forecast. 

The strategy used to provide forecasts is shown in Figure 2-41. Two different cycles of MADCast 
are run operationally in order to reduce the latency of the forecast. Both cycles use the Rapid 
Refresh (RAP) forecast run by NOAA to generate the initial and boundary conditions that drive 
the MADCast forecast. The “near real-time” cycle (lower part in Figure 2-41) assimilates IR 
irradiances from GOES as well as the radiances from the circumpolar satellites. There is a delay 
of 3 hours in the circumpolar radiances, so this cycle only provides a valid forecast for the last 3 
hours of the simulation. The model is run four times a day on the synoptic hours doing cycling on 
the cloud fraction. The “operational cycle” (upper part on Figure 2-41) is responsible for the 
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forecast that goes into the nowcasting integrator. The cloud fraction of a given forecast is initialized 
using information from the “near real-time” cycle if there is a valid forecast for the initial 
conditions. If not, the cloud fraction from a previous run from the “operational cycle” is used. In 
addition, GOES radiances for the initial conditions are assimilated. GOES data are available with 
a delay of about 14 minutes for the synoptic and semi-synoptic hours and about 3 minutes for the 
rest of the hours. MADCast runs in about 9 minutes, which leads to the 23 or 12 minute latencies 
of the forecast. Hence, splitting the forecast in two cycles allows us to assimilate the irradiances 
from the circumpolar satellites without an adverse effect on the latency of the forecast. 

2.4.3 MADCast Performance 

MADCast added value with respect to a purely NWP forecast for some forecast horizons. 
Theoretically, MADCast should provide superior performance over NWP models like WRF-
Solar™ at the beginning of the forecast due to the assimilation process. After some time, the WRF-
Solar™ forecast should be superior given the better physics of the model.  

Data from the quasi-operational forecast was used to investigate the added value of MADCast with 
respect to the WRF-Solar™ Nowcasting system (section 2.6). The RMSE as a function of the lead 
time calculated with the four months of quasi-operational runs from December 2014 to March 
2015 for the GHI from MADCast and WRF-Solar™ Nowcasting are shown in Figure 2-42. Results 
summarize statistics over fourteen sites over the contiguous U.S. (7 SURFRAD sites and 7 
Integrated Surface Irradiance Study [ISIS] sites). MADCast RMSE shows a steady increase as a 
function of the lead time. On the contrary, the RMSE of WRF-Solar™ shows larger values at the 
beginning of the forecast with near steady values after 1 hour 30 minutes. At 1 h30 min both 
models show similar RMSE. This indicates that, on average, MADCast forecast is superior to 
WRF-Solar™ Nowcasting during the first hour and a half.  
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Figure 2-42. MADCast (green) and WRF-Solar™ Nowcasting (red) RMSE of the GHI as a function of the lead time. 

The added value of MADCast in the short-term forecast (Figure 2-42) indicates the potential of the 
model for nowcasting applications. A comprehensive comparison of MADCast performance 
against observations, and the rest of the nowcasting components, is provided in chapter 5. 

Publications regarding MADCast 

Journal Papers 

Auligné, T., 2014a: Multivariate Minimum Residual Method for Cloud Retrieval. Part I: Theoretical 
Aspects and Simulated Observations Experiments. Mon. Wea. Rev., 142, 4383 – 4398. 

Auligné, T., 2014b: Multivariate Minimum Residual Method for Cloud Retrieval. Part II: Real 
Observations Experiments. Mon. Wea. Rev., 142, 4399 - 4415. 

Descombes, G., T. Auligné, H.-C. Lin, D. Xu, C. Schwartz and F. Vandenberghe, 2014: Multi-sensor 
Advection Diffusion nowCast (MADCast) for cloud analysis and short-term prediction. NCAR 
Tech. Rep. TN-509STR. 21 pp. 

Xu, D., Auligné T., Huang X.-Y., 2015: A Validation of the Multivariate and Minimum Residual Method 
for Cloud Retrieval Using Radiance from Multiple Satellites. Advances in Atmospheric Sciences, 
32, 349-362. doi: 10.1007/s00376-014-3258-5 

2.5 WRF-SOLAR-NOWCASTING 

This section provides a description of the WRF-Solar-Nowcasting system, which was primarily 
developed by Pedro Jiménez of NCAR. The model is based on a specific configuration of the 
WRF-Solar™ model (Chapter 3 of this document; Jiménez et al. 2016a) designed to minimize 
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latency and maximize the speed of the forecast in order to meet nowcasting needs (section 2.5.2). 
The potential benefit of augmenting the WRF-Solar-Nowcasting system by including the effects 
of clouds not explicitly modeled is also discussed (section 2.5.3). 

Much of the material in this section serves as the basis of Jiménez et al. (2016b). 

2.5.1 Quasi-operational Forecast 

The WRF-Solar-Nowcasting quasi-operational forecast started in September 2014. The model 
provides a 6-hour forecast over CONUS with a 9-km horizontal grid spacing. A schematic of the 
forecast strategy is shown in Figure 2-43. The model is run every hour using forecast data from 
the NOAA Rapid Refresh (RAP) model (Benjamin et al. 2016) to create the initial and boundary 
conditions. The model is initialized with the 3-h forecast from RAP, which allows us to have the 
forecast available around 40 minutes before the initial time of the simulation (equivalent to 40-
min negative latency). The output is recorded every 15 min and it is an input to the nowcasting 
integrator. 

 

 
Figure 2-43. WRF-Solar™ Nowcasting quasi-operational forecast. 

WRF-Solar-Nowcasting uses the solar augmentations that were available at the beginning of the 
quasi-operational forecasts. These include an improved solar tracking algorithm, output direct and 
diffuse components, and time series every model time step at sites with surface irradiance available 
for evaluation of the model performance. The aerosols are represented using a monthly 
climatology and thus avoiding the increase in the computational cost associated with the advection 
of aerosols. An important WRF-Solar™ augmentation for nowcasting needs, the feedback of 
unresolved clouds, was not available at the beginning of the quasi-operational period and thus was 
not activated. 

The good performance of WRF-Solar-Nowcasting was already discussed in section 2.4.4, wherein 
it was shown that WRF-Solar-Nowcasting was competitive with the improved cloud initialization 
of MADCast after 1.5 hours of simulation.  

A comprehensive description of the system performance is described in chapter 5.  

In this section we focus on the radiative effects of unresolved clouds. Including the effects of the 
unresolved clouds is desirable at a 9-km horizontal grid spacing. Indeed, the WRF-Solar™ shallow 
cumulus (Deng et al. 2014) parameterization was specifically designed for these horizontal grid 
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spacings [O ~10 km]. In order to understand the potential benefit of activating the parameterization 
in this nowcasting framework, a sensitivity study was performed 

2.5.2 Effects of the Unresolved Clouds 

Three numerical experiments were performed with the WRF-Solar-Nowcasting model. The first 
experiment (NO-FEEDBACK) does not take into account the effects of the unresolved clouds on 
the atmospheric radiative transfer. The second experiment (DEEP-FEEDBACK) only activates the 
radiative feedbacks of deep convective cumulus clouds as an intermediate step in representing all 
scales of unresolved clouds. This is accomplished via the cumulus feedbacks to radiation 
implemented in the Grell-Freitas scheme (Grell and Freitas 2014). Finally, the third experiment 
(ALL-FEEDBACK) activates the radiative feedbacks of both the deep and shallow cumulus clouds 
using the parameterization implemented in WRF-Solar™ (Deng et al. 2014; see section 3.1). 

Each experiment consists of 52 WRF-Solar-Nowcasting simulations spanning the year of 2014 to 
represent the different synoptic regimes over the CONUS. The first simulation is launched on 1 
January 2014 followed by one simulation every week. This configuration reduces the temporal 
correlations and, at the same time, alleviates the computational cost of obtaining simulations for a 
complete year. The simulations are initialized at 15 UTC using analysis data from the RAP model 
with the lateral boundary conditions updated every 3 hours. Similar to the quasi-operational runs, 
WRF-Solar-Nowcasting is run for 6 hours, recording the output every 15 minutes.  

The model uncertainty is considered by using the stochastic kinetic energy backscatter scheme 
(SKEBS; Shutts 2005; Berner et al. 2009). (SKEBS has recently been re-named the stochastic 
multi-scale perturbation scheme [STOMP].) There are a total of 10 ensemble members for each 
simulation. Thus there are 520 WRF-Solar™ Nowcasting runs (52 cases x 10 ensemble members) 
for each one of the three numerical experiments. The stochastic perturbations introduced in each 
ensemble member are configured to maximize the spread over the 6-h run.  

The predictability of GHI is assessed against observations from the SURFRAD network 
(Augustine et al. 2000, 2005) and the ISIS network (Hicks et al. 1996). Each network has seven 
stations available over CONUS. These are among the highest quality GHI observations over 
CONUS. A quality control procedure to ensure consistency between the solar zenith angle and the 
recorded values was applied to further increase the quality of the data (Roesch et al. 2011). 
Additionally, the 1-min records from the SURFRAD network were averaged to 3 minutes to match 
the records provided by the ISIS network. Data were matched to WRF-Solar's 15-min output. A 
5% error is randomly introduced to the simulated GHI to account for the observational error 
(Augustine et al.2000). 

2.5.3 Systematic Errors 

The benefits of accounting for the effects of unresolved clouds is first indicated by evaluating the 
GHI bias as a function of the lead time (Figure 2-44). The GHI value at the grid point nearest to 
each of the 14 observational sites was used in the comparison. We used bootstrap re-sampling to 
compute error bars in order to assess if the differences are statistically significant. The NO-
FEEDBACK experiment showed a positive bias during all lead times with a mean bias of 49 W 
m−2. Incorporating the feedbacks from cumulus clouds (DEEP-FEEDBACK experiment) reduced 
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the bias at all lead times (mean bias of 39 W m−2, a 20% improvement over NO-FEEDBACK). 
When the effects of both deep and shallow cumulus were considered in the ALL-FEEDBACK 
experiment, the bias was considerably reduced with a statistically significant improvement for 
most of the lead times (mean bias of 22 W m−2, a 55% improvement over NO-FEEDBACK). 

 
Figure 2-44. GHI bias as a function of the lead time for the three experiments (see legend). The bias is calculated 
using the complete set of SURFRAD and ISIS observations and the entire set of simulations. The error bars are 

calculated using a bootstrap re-sampling to test statistical significance. 

Inspecting the bias at individual locations reinforces the conclusion that it is necessary to 
parameterize the cumulus feedbacks from both the shallow and deep convection schemes (Figure 
2-45a). Experiments NO-FEEDBACK and DEEP-FEEDBACK displayed a positive bias at all the 
sites. This systematic error was corrected in the ALL-FEEDBACK experiment that largely 
suppressed the bias at most of the sites, and even displayed negative biases at one site. 

The seasonal evolution of the bias further supports the benefits of parameterizing the radiative 
effects of the unresolved clouds (Figure 2-45b). Spring and summer (autumn and winter) months 
showed the largest (smallest) positive bias in NO-FEEDBACK. Activating the effects of the 
unresolved cumulus in experiment DEEP-FEEDBACK revealed a positive feedback during spring 
and summer. The spring and summer behavior was further improved when the effects of the 
shallow cumulus were activated in experiment ALL-FEEDBACK. ALL-FEEDBACK also had the 
largest GHI bias reduction during autumn. Winter shows little to no impacts associated with 
radiative effects of unresolved clouds. 
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Figure 2-45. (a) Bias at each SURFRAD and ISIS observational site, and (b) seasonal evolution of the bias 

calculated with a running mean of the bias from each WRF-Solar™ Nowcasting simulations. 

2.5.4 Error Characterization and Prediction 

The RMSE and spread versus lead time are plotted in a dispersion diagram in Figure 2-46a. A 
perfect, statistically consistent ensemble would have identical RMSE and ensemble spread (e.g., 
Raftery et al. 2005; Wilks 2006). The three experiments all had similar RMSE (solid lines) at the 
different lead times. Experiment ALL-FEEDBACK produced slightly lower RMSE values than 
the other experiments but this reduction was not statistically significant. In addition, although 
experiments DEEP-FEEDBACK and ALLFEEDBACK produced an increase in the ensemble 
spread (dashed lines), no experiment displayed matching RMSE and spread. 
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Figure 2-46. Dispersion diagrams using a) the nearest grid point to SURFRAD and ISIS sites and b) including the 

effects of the model's effective resolution. 

The rank histograms (Anderson 1996) together with the missing rate error (MRE; Eckel and Mass 
2005) provide further evidence of the under-dispersive nature of the ensembles (Figure 2-47a,b). 
A larger positive (negative) MRE reveals a more under-dispersive (over-dispersive) ensemble. 
Experiment NO-FEEDBACK exhibited a relatively flat histogram with a tendency for all 
ensemble members to overestimate GHI (MRE = 16.90%, Figure 2-47a). Activating the effects of 
the unresolved clouds in experiment ALL-FEEDBACK reduced the tendency to overestimate GHI 
(Figure 2-47b). However, all members underestimated GHI more frequently (MRE = 17.20 %). 
Experiment DEEP-FEEDBACK showed similar results (not shown). 
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Figure 2-47. Rank histograms for GHI at the nearest grid point to SURFRAD and ISIS sites from the a) 

NO_FEEDBACK and b) ALL-FEEDBACK experiments. The rank histograms for GHI as a result of including the 
model's effective resolution for the c) NO-FEEDBACK and d) ALL-FEEDBACK experiments. 

The under-dispersion can be largely ameliorated by considering the effects of the effective 
resolution (i.e. number of grid increments affected by numerical dissipation). The 7∆x effective 
resolution of WRF suggests that any phenomena below this scale are not properly resolved by the 
model. This implies that one must assess the resolved and unresolved clouds within 7 x 7 grid 
points of the nearest grid point to a given observational site. The simplest way to account for the 
impact of the effective resolution is to randomly perturb the GHI values at the nearest grid point 
using information from the grid points within the effective resolution. Here, we added a random 
value extracted from a normal distribution with zero mean and a standard deviation corresponding 
of the 49 GHI values of the 7 x 7 grid points surrounding the observational site. In order to avoid 
unrealistic values, the resulting GHI was forced to be greater than or equal to zero and no more 
than 10% higher than the clear sky GHI value. 

The positive dispersive impacts of accounting for the effective resolution are illustrated by the rank 
histograms shown in Figure 2-47c and d. The frequency that all members of the ensemble 
overestimated GHI (Figure 2-47a and c) was decreased from experiment NO-FEEDBACK, 
although it was still under-dispersive (MRE = 7.26%; Figure 2-47c). Hence, the effects of effective 
resolution on the resolved clouds only partially improved the under-dispersion. The combination 
of both, accounting for the effective resolution and including the effects of the unresolved deep 
and shallow cumulus clouds, produced an ensemble with better statistical consistency (MRE = 
5.85%, a 20% improvement; Figure 2-47d). 

Including the impacts of the effective resolution also produces positive effects in the dispersion 
diagram (Figure 2-46b). The spread and the RMSE are now in better agreement, particularly for 
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the ALL-FEEDBACK experiment after lead times beyond 2 hours. The match of the RMSE and 
spread lines indicates that accounting for both the effects of unresolved clouds and the effective 
resolution of the model provides a meaningful quantification of the simulated uncertainty. We 
underline how difficult is to reach a good statistical consistency at these short lead times without 
any post-processing (Buizza et al. 2003). 

2.5.5 Conclusions 

The role of the unresolved clouds on the short-range GHI predictability has been systematically 
analyzed using observations and ensemble simulations spanning a one-year period. Including the 
radiative effects of unresolved cumulus, both deep and shallow, is necessary to significantly reduce 
a systematic positive bias in GHI. The bias improvements are systematic across all sites analyzed. 
Summer months reveal nearly unbiased GHI simulations whereas winter months show only small 
impacts to the radiative effects of unresolved clouds, which suggests that other cloud processes 
may not be properly represented in the model. Although slight improvements were produced in 
the RMSE, the error reduction is not statistically significant. Accounting for the unresolved clouds 
therefore produces a better cloudiness field, but the timing of the modeled clouds does not 
necessarily match with observations. This finding stresses the difficulties of simulating small 
atmospheric scales of motion, which are inherently uncertain, and necessitates the ensemble 
approach of this assessment to quantify uncertainties in the estimations.  

A meaningful quantification of the prediction uncertainties (consistency between the RMSE and 
the spread of the ensemble) can be demonstrated with proper representation of the model’s 
effective resolution. Thus one should consider the model’s effective resolution, as well as the 
inherent uncertainty in modeling the specific location of convective clouds, when assessing GHI 
predictions that include the radiative effects of unresolved clouds. 

2.6 MAD-WRF 

The development of MAD-WRF was led by Pedro Jiménez of NCAR. 

The two nowcasting systems, MADCast (section 2.4) and WRF-Solar-Nowcasting (section 2.5), 
have been coupled to form MAD-WRF in order to exploit desirable and compatible characteristics 
of each system. MADCast assimilates infrared irradiances from different satellite platforms to infer 
the presence of clouds. The assimilated cloud fraction is subsequently advected and diffused, with 
simplified model physics, in order to provide the cloud forecasts. Once the forecast is completed, 
assumptions are made on how the clouds attenuate the clear sky radiation in order to obtain the 
irradiance forecasts. WRF-Solar™ does not assimilate clouds, but has better physical packages to 
represent microphysics and the interaction of clouds with radiation. The coupled system therefore 
takes advantage of the data assimilation from MADCast and the better physics of WRF-Solar™. 

There are three fundamental aspects that need to be considered to couple the models: 

• First, the definition of the cloud fraction from MADCast is different than the WRF-Solar™ 
definition, which is the conventional definition for any NWP model. In MADCast, the 
cloud fraction of each grid volume represents the contribution to the 2-D cloud fraction 
(vertically integrated) that do not overlap with other grid volumes in the same vertical 
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column. On the contrary, the cloud fraction in NWP models is defined as the fraction of a 
given grid volume that has clouds. In order to use the assimilated cloud fraction in the 
coupled system (MAD-WRF), the MADCast cloud fraction needs to be converted to the 
NWP definition. 

• Second, MADCast provides no information about the cloud water and ice mixing ratios 
that need to be specified in order to compute the shortwave radiative transfer.  

• The third aspect is to consolidate the two sets of cloud fractions and cloud mixing ratios 
from MADCast and WRF-Solar-Nowcasting in order to provide one single set to the 
shortwave radiation package. This consolidation should take into account the better 
performance of MADCast during the beginning of the forecasts. Having consistent cloud 
fractions and mixing ratios and a strategy to consolidate the two sets are the fundamental 
components of the coupled MAD-WRF nowcasting system.  

The cloud fraction from MADCast is converted to the NWP definition, assuming that the clouds 
are homogeneous. The first step is to calculate the 2-D cloud fraction from MADCast. This is 
straightforward given the MADCast definition. One just needs to add the cloud fractions of a given 
vertical column and repeat the process for each column. Assuming that the clouds are 
homogeneous implies that the 2-D cloud fraction is the cloud fraction of each grid volume that has 
clouds. In order to suppress the tendency of MADCast to produce clouds that reach the ground, a 
threshold has been imposed to classify the grid volumes into clear and cloudy. Figure 2-48 shows 
a conceptual diagram to illustrate this process. 

The cloud and ice mixing ratios were specified with the assumption that the clouds are warm and 
homogeneous. Hence, we neglect the contribution of ice in the shortwave radiative transfer and 
impose the same cloud water mixing ratio for all the grid volumes identified as cloudy. 

The two sets of cloud fractions and cloud mixing ratios were merged based on our experience with 
the quasi-operational runs performed with MADCast and WRF-Solar-Nowcasting. The analysis 
of four months of forecasts, from December 2014 to March 2015, indicates that MADCast is, on 
the mean, superior to WRF-Solar-Nowcasting during the first 1.5 hours of the simulation (see 
section 2.4). After that point WRF-Solar-Nowcasting is usually superior to MADCast. Based on 
these empirical results, the cloud fraction and mixing ratios from MADCast are imposed during 0-
1 h; the two sets are averaged from 1-1.5 h, and the set from WRF-Solar-Nowcasting is imposed 
after 1.5 h. 
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Figure 2-48. Conceptual diagram showing the cloud fraction from MADCast (black line) and its conversion to the 
NWP cloud fraction (gray rectangle). The threshold in the cloud fraction is also shown (gray dashed line). 

The consolidation of the two sets of cloud fractions and mixing ratios will be revisited in the future 
to incorporate a more flexible framework. Comparisons of the quasi-operational forecasts from 
MADCast and WRF-Solar-Nowcasting will be used to redefine the merging strategy as a function 
of the month of the year and even as a function of the location. This is expected to provide better 
performance than the current static merging. However, the static merging is a first solid step 
forward that facilitates us to understand the behavior of MAD-WRF. 

In order to compare the performance of the coupled system with respect to its both components, 
MADCast and WRF-Solar-Nowcasting, we are running the coupled system quasi-operationally 
twice a day starting in August 2015. The forecasts are launched at 1400 and 1600 UTC and run 
for 6 hours, recording the output every 15 minutes like the other nowcasting components. Results 
from this experiment are provided in chapter 5. 

2.7 INTER-COMPARISON CASE STUDIES 

Much of the material in this section serves as the basis for Lee et al. (2016). 

2.7.1 Motivation  

To better understand the performance of the various Sun4Cast®  components in specific situations, 
a series of inter-comparison case studies was undertaken by Jared Lee of NCAR. Four case days 
were chosen for the region near Sacramento, California. These four case days represent canonical 
cloud cover regimes of the region, and thus are a good test forecast systems that predict GHI. 
Fifteen-minute average GHI predictions were compared against observations from seven 
pyranometers owned and operated by the SMUD. A map indicating the locations of these 
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pyranometers and nearby METAR sites appears as Fig. 2-49. Results indicate that each forecast 
system has its own strengths and weaknesses in the various regimes, times of day, and forecast 
lead times. 

The specific components of Sun4Cast®  that were used in the case studies were StatCast-Cubist, 
CIRACast, MADCast, and four configurations of WRF-Solar™ Nowcasting. 

The StatCast-Cubist model was trained with ten-fold cross-validation on data for all daylight hours 
(i.e. both METARs and GHI observations > 25 W m-2 at forecast initialization time) for the period 
from 25 January–28 May 2014, excluding the four case study days. Twelve individual StatCast-
Cubist models were trained independently to predict each of the twelve forecast lead times from 
15 minutes and extending to 180 min. This allowed the StatCast-Cubist model to correct for any 
inherent systematic biases for those lead times. StatCast-Cubist forecasts were initialized every 15 
minutes. 

CIRACast forecasts were initialized every 30 minutes (:00 and :30), and produced forecasts for 
lead times from 15 minutes and extendingto 165 min. Forecasts initialized in the morning before 
1500 UTC were not included in this analysis because of the algorithm’s difficulty in detecting 
cloud objects in the visible satellite imagery with such a low sun angle. 

The MADCast simulations are 6 hours long with the boundary conditions updated every 3 hours. 
Three simulations are performed for each case study with the model initialized at 1200, 1500, and 
1800 UTC. The model output is recorded every 15 min. The aerosol direct effect is represented 
using a 4º-latitude x 5º-longitude monthly climatology from Tegen et al. (1997). While MADCast 
is designed to assimilate irradiances from different satellite instruments, the forecasts for these 
case studies only assimilated GOES-East irradiances to analyze the potential of imagers on board 
of geostationary satellites for solar irradiance forecasting. 

For these case studies we ran four versions of WRF-Solar™ Nowcasting. The first experiment, 
“Baseline,” only activated the solar augmentations introduced in support of solar energy 
applications, which include an improved solar tracking algorithm and updates in the modeled 
surface irradiances every time step of the model. The second experiment, “Aero,” activated the 
aerosol direct effect using a high-resolution aerosol monthly climatology over CONUS (0.05º x 
0.05º) generated from aerosol climatological data provided by Solar Consulting Services (SCS). 
The third WRF-Solar™ experiment, “ShCu,” activated the Deng et al. (2014) mass-flux 
parameterization to represent radiative effects of unresolved deep and shallow convective clouds. 
While it is technically a mass-flux parameterization, it can also be considered a shallow cumulus 
scheme. The last WRF-Solar™ experiment, “Aero+ShCu,” used both the higher-resolution 
climatological aerosol data and the Deng mass-flux scheme. As with the MADCast runs, the four 
WRF-Solar™ experiments were initialized at 1200, 1500, and 1800 UTC on each case day, with 
each forecast extending to a lead time of 6 hours. 

2.7.2 Case Descriptions 

With the aid of archived METAR sky cover observations from the Sacramento Executive Airport 
(KSAC) and GOES-15 (GOES-West) visible (0.65 µm) imagery, four days in April 2014 were 
identified that exhibited typical cloud cover regimes over the Sacramento area: 
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• Case 1 (17 Apr 2014): This day had mostly clear skies around Sacramento, with only a 
few small, isolated clouds that briefly moved over individual SMUD pyranometers 
during the middle of the day. This is essentially a control case. Extensive cloud cover in 
northern and central/southern California made it a challenging clear day to model, 
however. 

• Case 2 (13 Apr 2014): This day had a low deck of marine stratocumulus in the 
Sacramento area in the morning. By about 1900 UTC (1200 PDT), the stratocumulus had 
burned off, leaving clear skies over each SMUD pyranometer. Predictions of the 
development, advection, and burn-off of marine stratocumulus clouds are challenging, 
and are of acute interest to utility operators on the U.S. West Coast. 

• Case 3 (22 Apr 2014): This day had mostly clear skies in the early morning, before a field 
of small cumulus clouds formed over the Sacramento area around 1800 UTC (1100 
PDT). The mix of clouds and sun remained through sunset. This case is a challenging one 
for any model, as the field of fair-weather cumulus clouds was essentially stochastic. 

• Case 4 (25 Apr 2014): This day had mostly overcast, rainy conditions from sunrise to 
sunset, and 0.42” of rain fell at KSAC. From the GOES-15 imagery it was apparent that 
occasionally thinner clouds moved over some of the SMUD pyranometers throughout the 
day. This case was expected to provide another tough test for the models. 

Each of these four case days presents a unique challenge for models, as will be discussed in the 
next section. 

2.7.3 Results 

2.7.3.1 Case 1 

Mostly clear skies predominated over the Sacramento region on 17 April 2014, though there was 
considerable cloudiness to the northwest and to the south of Sacramento throughout the day, as 
seen in the GOES visible image shown in Fig. 2-50. As the day progressed, clouds advanced 
toward Sacramento from both directions. The SMUD pyranometers in general also exhibited a 
clear sky profile for GHI (Fig. 2-51), with little variability across the network. Network-averaged 
GHI observations and forecasts for the various models are shown in Fig. 2-52 and Fig. 2-53, and 
the network-averaged GHI mean error and mean absolute errors as a function of lead time are 
found in Fig. 2-54. 

Note that in Fig. 2-52a,b, only the lead times extendingto 60 minutes for StatCast and CIRACast 
are presented in order to reduce clutter. The remaining panels (Fig. 2-52c,d and Fig. 2-53) show 
the three forecast initialization times (1200 UTC, 1500 UTC, and 1800 UTC) for MADCast and 
WRF-Solar™. Error bars denoting ±1 standard deviation across the SMUD network are always 
displayed for the observations, but only for select forecast time series in order to reduce clutter. 
The WRF-Solar™ Aero+ShCu forecasts are shown in panel d for both Fig. 2-52 and Fig. 2-53 to 
facilitate easier comparison among the various forecasts. Additionally, the thin lines in Fig. 2-54a,b 
denote the ±1 standard deviation ranges in the errors for each time series. The same plotting 
conventions and ranges are followed for all the cases. 

With the exception of MADCast (Fig. 2-52c), all of the forecasting systems performed well for 
this day. MADCast incorrectly predicted that some of the clouds in the region would advect over 
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the SMUD sites, thus attenuating the modeled GHI substantially and leading to substantial under-
forecasts. This highlights a limitation of satellite-based techniques, though CIRACast (Fig. 2-52b), 
the other satellite-based technique here, did not suffer the same problems as MADCast. On the 
other hand, CIRACast displayed a small consistent over-forecasting bias. This positive GHI bias 
most likely stems from insufficient modeled aerosol loading in CIRACast for this case day. This 
conclusion is further reinforced by the WRF-Solar™ experiments with the default aerosol 
modeling (Baseline and ShCu, Fig. 2-53a,c) having an even larger, consistent positive GHI bias 
than CIRACast. The WRF-Solar™ experiments with a representation of the aerosol direct effect 
(Aero and Aero+ShCu, Fig. 2-53b,d) noticeably reduced this positive GHI bias. This is strong 
evidence that improved handling of aerosols is necessary for numerical models to have better clear 
sky GHI predictions, consistent with Jiménez et al. (2016a). The best forecast model on this day 
was StatCast (Fig. 2-52a), which had a mean error of nearly 0 W m-2 for nearly all lead times (Fig. 
2-54). As StatCast was trained on real GHI observations and weather conditions around the same 
time, it already accounts well for the aerosol loading in this region at this time. This result 
highlights one of the strengths of statistical forecasting, that no direct knowledge of the local 
aerosol loading is needed, provided it is not radically different from other days in the training 
dataset, and that the observed irradiance on that day forms the basis for the prediction. 

2.7.3.2 Case 2 

An area of marine stratocumulus clouds was widespread across coastal regions of California, and 
had infiltrated through the San Francisco Bay along the Sacramento River to the Central Valley 
around the SMUD region early in the morning of 13 April 2014, as seen in Fig. 2-55. The 
stratocumulus gradually burned off by about 1900 UTC, though not uniformly over all the sensors, 
and clear sky conditions prevailed the rest of the day (Fig. 2-56). Network-average observations 
and forecasts are shown in Fig. 2-57 and Fig. 2-58, and GHI forecast errors as a function of lead 
time are displayed in Fig. 2-59. 

For the first 75-90 minutes of forecast lead time, StatCast unquestionably provided the best 
forecasts, as it had the lowest errors (Fig. 2-57a andFig. 2-59). For these short lead times, not only 
did StatCast perform well during the cloudy morning, but also during the clear afternoon, as in 
Case 1. Errors increased steadily with lead time, however, indicating that a longer training dataset 
may be helpful to capture additional marine layer events similar to this one. 

CIRACast forecasts for the early morning failed to capture the marine layer clouds, but forecasts 
initialized later in the morning improved in predicting the cloud-attenuated GHI for 15-45 minute 
lead times (Fig. 2-57b). This short-term improvement for mid-morning was likely due to improved 
cloud object identification on the visible satellite data owing to a higher sun angle. However, even 
when CIRACast identified the presence of clouds in the SMUD area at initialization, CIRACast 
appeared to advect these stationary clouds out of the region after about an hour, thereby returning 
GHI forecasts to near clear sky values. Correctly simulating stationary clouds remains a difficult 
problem for satellite-based forecasts. For the clear skies later in the day, CIRACast suffered from 
the positive GHI biases that also occurred during Case 1, but otherwise performed well. 

MADCast, in contrast to CIRACast, did not forecast any clouds over the SMUD region, and so 
overforecasted GHI in the morning (Fig. 2-57c). In the clear sky conditions, however, MADCast 
had a negative GHI bias, unlike any of the other models. This can likely be attributed to MADCast 
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diffusing and advecting marine stratocumulus from the northern California coast to the SMUD 
region, which provided a thin cloud cover in the model over the SMUD sensors, instead of 
dissipating the largely stationary clouds as was observed around midday. This finding illustrates 
that satellite-based methods like MADCast simply do not capture cloud evolution after forecast 
initialization, and sometimes have difficulty handling terrain-locked or other semi-stationary cloud 
features. And yet, despite these flaws in the forecast, MADCast had the lowest errors of any model 
for lead times of 120 minutes and beyond. 

For the WRF-Solar™ experiments, none of the 1200 UTC runs simulated any clouds, while the 
1500 UTC runs all nearly perfectly handled the marine layer for most of the morning, except for 
burning off the stratocumulus about 1-2 hours too quickly (Fig. 2-58). The 1800 UTC runs burned 
off the clouds at nearly the correct time. These findings illustrate the tremendous potential value 
that NWP can have in difficult forecast situations, even for nowcasting time scales, though 
additional work is needed to identify why the 1200 UTC runs failed to capture the marine layer 
clouds. For the clear skies later in the day, WRF-Solar™ forecasts exhibited the same positive 
GHI biases that were endemic to the Case 1 forecasts, with reduced biases in the Aero and 
Aero+ShCu experiments (Fig. 2-58b,d) than in the Baseline and ShCu experiments (Fig. 2-58a,c). 

2.7.3.3 Case 3 

Because a robust and long-lasting field of fair-weather cumulus clouds formed in place over the 
SMUD region by 1800 UTC on 22 April 2014 (Fig. 2-60), following clear skies in the morning, 
Case 3 is a particularly interesting and challenging case to model. The immense variability in 
observed GHI across the SMUD network throughout the day can be seen in Fig. 2-61. For a 
situation like this, correct predictions of the extreme variability in the forecast across the network 
would be critical to grid operators. GHI forecasts and observations for StatCast, CIRACast, 
MADCast, and WRF-Solar™ are shown in Fig. 2-62 and Fig. 2-63. Forecast errors as a function 
of lead time appear in Fig. 2-64. 

Fig. 2-62 and Fig. 2-63 together indicate that all of the forecast methods actually performed 
reasonably well for this complex and difficult case, though StatCast (Fig. 2-62a) and CIRACast 
(Fig. 2-62b) generally had a positive GHI bias through the first 60 minutes of lead time. Later lead 
times generally had larger errors for this case (Fig. 2-64), which is to be expected in a case with a 
highly variable cloud field that forms in place overhead essentially stochastically, rather than being 
advected into the area. Cases like this are difficult if not impossible for satellite-based forecasting 
systems like CIRACast to capture well. MADCast, somewhat surprisingly, had the lowest errors 
overall of any of the forecast modules for Case 3 because its SMUD-average predictions remained 
in the middle of the variability (Fig. 2-62c). The small standard deviations on the MADCast 
predictions are indicative of a smooth cloud field that was consistent over the entire network at 
any given time. So even though the details of the cloud field were incorrect in MADCast, and even 
though the variability was decidedly insufficient on this day, the average GHI prediction was, on 
balance, good for this particular day. The WRF-Solar™ runs with the Deng ShCu scheme turned 
on (ShCu and Aero+ShCu, in Fig. 2-63c,d) also had generally reduced errors compared to the runs 
without the ShCu scheme (Baseline and Aero, in Fig. 2-63a,b), illustrating the benefits of using 
that scheme to better represent unresolved clouds. 
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2.7.3.4 Case 4 

Skies were overcast throughout 25 April 2014, but not uniformly so, as can be seen in the satellite 
image at 2100 UTC in Fig. 2-65. The occasional thinning of the clouds over certain sensors was 
reflected in the occasional peaks in observed GHI in Fig. 2-66, though observed GHI was quite 
low most of the day. GHI forecasts from the various models are shown in Fig. 2-67 and Fig. 2-68, 
with the forecast errors as a function of lead time displayed in Fig. 2-69. 

StatCast predictions were generally good in a lead time range of 15-45 minutes (Fig. 2-67a), but 
the errors quickly grew beyond that lead time (Fig. 2-69). The short positive trends in GHI as 
clouds occasionally thinned appear to have led to StatCast often predicting those thinning trends 
to continue, leading to large errors at longer lead times. Overcast days are far less common in 
Sacramento than clear days, but a longer training dataset with additional overcast days included, 
or potentially a regime-dependent version of StatCast, as described in section 2.2 (e.g., 
McCandless et al. 2016a), would likely have led to better StatCast forecasts. 

CIRACast predictions at lead times less than 60 minutes were also reasonable, but with a marked 
positive GHI bias indicating that the clouds were not optically thick enough in the model, and 
occasional near-clear sky forecasts for short periods (Fig. 2-67b). The satellite loop for that day 
periodically revealed pockets of clear sky or thin clouds to the west of Sacramento that eventually 
were filled in by other, thicker clouds before reaching the region. It is these clear pockets that 
CIRACast detected and predicted would advect over the SMUD region. As with Case 3, satellite-
based forecast methods have extreme difficulty performing well when the cloud field rapidly 
develops or dissipates after initialization. 

MADCast did predict cloud cover, but, like CIRACast, the cloud cover did not attenuate enough 
irradiance (Fig. 2-67c). Also, as in Case 3, the variability in the MADCast forecasts was generally 
far smaller than the observed variability, and far smaller than the CIRACast variability. Even so, 
it was one of the better forecasts on this day, from an average error standpoint, though the errors 
grew steadily with time (Fig. 2-69). 

The WRF-Solar™ forecasts without the Deng scheme (Baseline and Aero, in Fig. 2-68a,b) poorly 
simulated the clouds through most of the day. Positive GHI biases were often large, due to 
insufficient cloud coverage and thickness, and the average errors were frequently the largest of 
any model. On the other hand, in the experiments with the Deng shallow cumulus scheme (ShCu 
and Aero+ShCu, in Fig. 2-68c,d), the GHI biases were markedly reduced, and even nearly 
eliminated during the middle of the day. These experiments generally produced the lowest errors 
of any model for Case 4. Even more so than Case 3, these results for Case 4 highlight the vital 
importance of simulating unresolved clouds for obtaining good GHI forecasts. 

2.7.4 Summary 

In this inter-comparison study the GHI forecasts from several forecast models — StatCast-Cubist, 
CIRACast, MADCast, and four versions of WRF-Solar™ — were compared over four case days 
with canonical sky cover regimes for the region of Sacramento, California. The various forecasts 
were compared against observations from seven pyranometers operated by the Sacramento 
Municipal Utility District (SMUD). While this study did not exhaustively study all types of sky 
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cover conditions, the four case days included a clear sky day, a day with morning marine layer 
stratocumulus followed by clear sky, a day with a field of fair-weather cumulus forming in place 
over the region, and an overcast day. 

Statistical forecasting, as accomplished with StatCast-Cubist, was the best forecast under clear 
skies, because its training dataset and the observations on that day had already accounted for 
attenuation from typical aerosol loading in the area. Furthermore, there was an abundance of clear 
days in the training dataset, which benefitted StatCast’s performance for Case 1. For all case days, 
StatCast often had some of the lowest errors in the first 45-60 min. When clouds were present, 
however, GHI forecast errors for longer lead times increased, unsurprisingly, especially in cases 
when trends in GHI reversed themselves due to rapidly changing cloud cover.  

Satellite-based forecasting methods, as with CIRACast and MADCast, were also generally good 
at short lead times, but struggled on days when clouds were rapidly forming, growing, and 
decaying after forecast initialization. These types of situations are a significant limitation for 
satellite-based forecast models. MADCast generally predicts a smoother cloud field than does 
CIRACast, which at times resulted in better mean GHI predictions across the network for 
MADCast, but at the cost of grossly underestimating the GHI variability. Furthermore, the 
treatment of aerosols and the corresponding GHI attenuation is an important factor in making 
accurate predictions of GHI: on the clear afternoon of Case 2, when both CIRACast and MADCast 
also predicted clear skies, CIRACast had a positive GHI bias, while MADCast had a negative GHI 
bias because it advected some thin marine stratocumulus clouds from the coast, even though the 
mostly stationary observed clouds instead dissipated. In many locations, model details of how to 
handle nearly stationary or terrain-locked clouds are a vital consideration.  

Numerical weather prediction with WRF-Solar™ was shown to provide comparatively accurate 
GHI predictions for all the cases studied here, especially when using a high-resolution aerosol 
dataset to represent the aerosol direct effect and when using the Deng mass-flux scheme to 
represent radiative effects of unresolved shallow cumulus clouds. The improved aerosol treatment 
made a noticeable difference in clear sky conditions, while the shallow cumulus scheme led to 
substantially reduced GHI errors when cloud cover was extensive. 

Each of the four case days that we examined revealed various strengths and weaknesses of the 
component Sun4Cast®  nowcasting systems. At various times of day, lead times, and sky cover 
regimes, different components do better or worse. This finding reinforces the need to include all 
these diverse components in the Sun4Cast®  system, and also indicates the need for further 
research to develop a dynamic weighting algorithm to make the most advantage of each system. 
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Fig. 2-49. Map of the locations of the SMUD pyranometers (pins) and nearby METAR sites (diamonds). See the 

legend for site names and corresponding symbol colors. 
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Fig. 2-50. Visible satellite image at 2100 UTC during Case 1. The locations of SMUD sensors 67-73 are indicated 

by the colors in the legend. 
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Fig. 2-51. Time series of 15-minute average GHI recorded by SMUD sensors 67-73 for Case 1. The color for each 

sensor is indicated in the legend. 
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Fig. 2-52. 15-minute GHI predictions and observations for Case 1, averaged over the SMUD 67-73 sensors, for a) 
StatCast, b) CIRACast, c) MADCast, and d) WRF-Solar™ Aero+ShCu. The error bars for select time series denote 

±1 standard deviation across the SMUD sensors. 
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Fig. 2-53. 15-minute GHI predictions and observations for Case 1, averaged over the SMUD 67-73 sensors, for a) 
WRF-Solar™ Baseline, b) WRF-Solar™ Aero, c) WRF-Solar™ ShCu, and d) WRF-Solar™ Aero+ShCu. The error 

bars denote ±1 standard deviation across the SMUD sensors. 
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Fig. 2-54. a) Mean error and b) mean absolute error for the nowcasting components for Case 1, as a function of 
forecast lead time. Thick lines denote average values, while thin lines denote the ±1 standard deviation range. 

Colors are described in the legends. 
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Fig. 2-55. Visible satellite image at 1500 UTC during Case 2. The locations of SMUD sensors 67-73 are indicated 

by the colors in the legend. 
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Fig. 2-56. Time series of 15-minute average GHI recorded by SMUD sensors 67-73 for Case 2. The color for each 

sensor is indicated in the legend. 
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Fig. 2-57. 15-minute GHI predictions and observations for Case 2, averaged over the SMUD 67-73 sensors, for a) 
StatCast, b) CIRACast, c) MADCast, and d) WRF-Solar™ Aero+ShCu. The error bars for select time series denote 

±1 standard deviation across the SMUD sensors. 
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Fig. 2-58. 15-minute GHI predictions and observations for Case 2, averaged over the SMUD 67-73 sensors, for a) 
WRF-Solar™ Baseline, b) WRF-Solar™ Aero, c) WRF-Solar™ ShCu, and d) WRF-Solar™ Aero+ShCu. The error 

bars denote ±1 standard deviation across the SMUD sensors. 
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Fig. 2-59. a) Mean error and b) mean absolute error for the nowcasting components for Case 2, as a function of 
forecast lead time. Thick lines denote average values, while thin lines denote the ±1 standard deviation range. 

Colors are described in the legends. 
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Fig. 2-60. Visible satellite image at 2100 UTC during Case 3. The locations of SMUD sensors 67-73 are indicated 

by the colors in the legend. 
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Fig. 2-61. Time series of 15-minute average GHI recorded by SMUD sensors 67-73 for Case 3. The color for each 

sensor is indicated in the legend. 
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Fig. 2-62. 15-minute GHI predictions and observations for Case 3, averaged over the SMUD 67-73 sensors, for a) 
StatCast, b) CIRACast, c) MADCast, and d) WRF-Solar™ Aero+ShCu. The error bars for select time series denote 

±1 standard deviation across the SMUD sensors. 
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Fig. 2-63. 15-minute GHI predictions and observations for Case 3, averaged over the SMUD 67-73 sensors, for a) 
WRF-Solar™ Baseline, b) WRF-Solar™ Aero, c) WRF-Solar™ ShCu, and d) WRF-Solar™ Aero+ShCu. The error 

bars denote ±1 standard deviation across the SMUD sensors. 
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Fig. 2-64. a) Mean error and b) mean absolute error for the nowcasting components for Case 3, as a function of 
forecast lead time. Thick lines denote average values, while thin lines denote the ±1 standard deviation range. 

Colors are described in the legends. 
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Fig. 2-65. Visible satellite image at 2100 UTC during Case 4. The locations of SMUD sensors 67-73 are indicated 

by the colors in the legend. 
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Fig. 2-66. Time series of 15-minute average GHI recorded by SMUD sensors 67-73 for Case 4. The color for each 

sensor is indicated in the legend. 

  



The Sun4Cast Solar Power Forecasting System   

 

138 
 

 
Fig. 2-67. 15-minute GHI predictions and observations for Case 4, averaged over the SMUD 67-73 sensors, for a) 
StatCast, b) CIRACast, c) MADCast, and d) WRF-Solar™ Aero+ShCu. The error bars for select time series denote 

±1 standard deviation across the SMUD sensors. 
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Fig. 2-68. 15-minute GHI predictions and observations for Case 4, averaged over the SMUD 67-73 sensors, for a) 
WRF-Solar™ Baseline, b) WRF-Solar™ Aero, c) WRF-Solar™ ShCu, and d) WRF-Solar™ Aero+ShCu. The error 

bars denote ±1 standard deviation across the SMUD sensors. 
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Fig. 2-69. a) Mean error and b) mean absolute error for the nowcasting components for Case 4, as a function of 
forecast lead time. Thick lines denote average values, while thin lines denote the ±1 standard deviation range. 

Colors are described in the legends. 
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3 WRF-SOLAR™ ENHANCEMENTS 

WRF-Solar™ is a specific configuration and augmentation of the Weather Research and 
Forecasting (WRF) model designed for solar energy applications. Recent upgrades to the WRF 
model contribute to making the model appropriate for solar power forecasting, and include: 

• Developments to diagnose internally relevant atmospheric parameters required by the 
solar industry 

• Improved representation of aerosol-radiation feedback 
• Incorporation of cloud-aerosol interactions 
• Improved representation of cloud-radiation feedback 

The WRF-Solar™ developments are presented in section 3.1. A comprehensive characterization 
of the model performance for forecasting during clear skies is presented in section 3.2. A first 
indication of the impact in the surface irradiance forecast of the cloud-aerosol interactions is also 
discussed in section 3.3. The configuration of the quasi-operational forecast is presented and 
discussed in section 3.4, and the conclusions are presented in section 3.5. 

Much of the material in this chapter serves as the foundation for Jiménez et al. (2016a). The 
interested reader is referred there for some additional details. 

3.1 THE WRF-SOLAR™ MODEL: ENHANCEMENTS TO THE STANDARD WRF MODEL 

WRF-Solar™ is a specific augmentation of the Advanced Research WRF (WRF-ARW) model 
(Skamarock et al. 2008) designed to provide an improved NWP tool for solar energy applications. 
We call the WRF lacking solar augmentation the “standard WRF” unless otherwise noted. In this 
section we document the WRF-Solar™ additions to WRF-ARW version 3.6, which was publicly 
released in April 2014. These include making DNI and DIF available at a temporal frequency 
limited only by the model time step, and several changes to model physics that account for 
feedbacks between aerosols, solar irradiance, and clouds. These mechanisms are illustrated in a 
conceptual diagram in Figure 3-1. 

Figure 3-1 also shows the different components of the irradiance. DNI, or direct normal irradiance, 
is the irradiance received per unit of area over a surface perpendicular to incoming rays from the 
sun. DIF, or diffuse irradiance, is the amount of surface irradiance that has been scattered by the 
atmosphere. GHI, or global horizontal irradiance, is the total amount of shortwave irradiance 
received by a horizontal surface at ground level, and combines DIF and the component of DNI 
perpendicular to the horizontal surface. 

3.1.1 Physical Enhancements for Solar Energy Applications 

Many solar applications require direct and diffuse solar irradiance components in addition to GHI. 
For example, if the aim is to calculate the shortwave irradiance that impinges onto the plane of a 
solar panel, the typical computational method includes (i) projecting DNI onto the direction normal 
to the plane of the panel; (ii) adding a fraction of DIF evaluated from a sky view factor (the fraction 
of the total sky hemisphere that is visible from a point in the panel); and (iii) adding a fraction of 
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GHI resulting from surface reflectance onto the tilted plane of the panel. An additional application 
is production from concentrated solar plants, for which DNI is the fuel responsible for the energy 
production (DIF cannot be concentrated). WRF-Solar™ addresses the need for separate direct and 
diffuse components by making them available in the WRF output, and also in auxiliary output files 
at arbitrary time intervals as short as the time step length of the model. 

 

 

Figure 3-1. Sketch representing the physical processes that WRF-Solar™ improves. The different components of the 
radiation are indicated. 

At least two of the existing shortwave parameterizations in WRF calculate the direct and diffuse 
radiative transfer equations (e.g. the Goddard scheme [Chou and Suarez 1999] and the Rapid 
Radiative Transfer Model for Global models scheme [RRTMG; Iacono et al. 2008]). In these cases, 
WRF-Solar™ adds the surface irradiance components to the model output. Other shortwave 
schemes do not explicitly solve for the direct and diffuse components, but provide GHI at the 
surface. Examples are the Dudhia scheme (Dudhia 1989), and an older Goddard scheme (Chou 
1992). The advantage of these simpler parameterizations is that they are faster at solving the 
radiative transfer equation. For these parameterizations, the direct and diffuse components are 
estimated from GHI using a regression model trained on world-wide observations (Ruiz-Arias et 
al. 2010). The optical air mass and the clearness index modulate the regression from GHI to DIF. 

Improvements to the solar position algorithm used in previous versions of WRF, particularly the 
equation of time (EOT; Muller 1995), are now included. Deviations associated with the 
eccentricity of the Earth’s orbit and the obliquity of the Earth previously caused irradiance leads 
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and lags of up to 16 mins, depending on the day of the year. The standard WRF, before version 
3.5.1, neglects the EOT correction, which is normally inconsequential when running the radiation 
scheme approximately every half hour. Solar energy applications demand more frequent calls to 
the radiation scheme, and the leads/lags then introduce non-negligible error. Simulations 
performed during a day close to a maximum lag reduced the RMSE in GHI by 31%. 

WRF-Solar™ aims to provide irradiance components at every time step while avoiding unphysical 
discontinuities. Typically, the computational time of a model integration step calling the radiation 
parameterization is an order of magnitude longer than an integration step that skips it, and the 
radiative computations are done at most every ten model steps. In between calls, the standard WRF 
assumes that irradiance is constant, introducing temporal discontinuities (steps) in irradiance 
values computed at the surface. In WRF-Solar™ two different methods have been implemented. 
The first one is based in a computationally efficient algorithm that interpolates the irradiance 
between successive calls to the radiation scheme considering only the change in the actual solar 
position, and assuming the cloud extinction effect remains fixed to the latest computed value (a 
smart persistence approach). The second one was built by NREL as part of this project: Fast All-
Sky Radiation Model (FARMS, Xie et al. 2016) for solar applications, which uses a simplified 
clear-sky radiative transfer model, REST2, and the simulated cloud transmittances and reflectances 
from RRTM with a sixteen-stream discrete ordinates radiative transfer (DISORT). FARMS 
therefore accounts for changes in hydrometeor content in between calls to the radiation 
parameterization. 

A particularly useful augmentation is irradiance output at time intervals limited only by the model 
time step. High-frequency time series of surface irradiance components are helpful when modeling 
solar ramps (i.e. an abrupt change in the surface irradiance). Figure 3-2 illustrates a solar ramp 
event accurately predicted by WRF-Solar™. The first part of the day features cloudy skies that 
block the DNI so that GHI equals the DIF. WRF-Solar™ predicts this with only a slight 
overestimation. Around 1700 UTC, scattered cloud conditions appear and clear-sky conditions 
alternate with clouds. WRF-Solar™ then simulates the different components of the irradiance, but 
with less high-frequency variability because the modeled irradiance is more representative of a 
temporal (and spatial) average. 
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Figure 3-2. Observed and simulated surface irradiance components during a solar ramp. The simulated irradiances 
are highlighted with a thick solid line on top of the thin colored line that represents the observed irradiances (see 

legend). 

3.1.2 Aerosol-Radiation Feedback: Aerosol Direct Effect 

Standard WRF simulations neglect the primary effects of atmospheric aerosols. The radiative 
impact of aerosols on GHI is relatively small, explaining the lack of attention to it for most 
meteorological applications. It has been recognized that highly polluted conditions can lead to 
biases, however (Barbaro 2015). 

The standard WRF model since version 3.5 has been capable of using a climatology-based aerosol 
parameterization developed at the European Center for Medium Range Weather Forecasts 
(ECMWF). The parameterization uses model results from Tegen et al. (1997) to derive monthly 
climatological means of the aerosol optical properties. Different models were used to simulate the 
transport of soil dust (Tegen and Fung 1995), sea salt, sulfate (Chin et al. 1996), and carbonaceous 
aerosols (Liousse et al. 1996). The 3-D aerosol optical depth (AOD) for each species is computed 
on a grid with horizontal spacing of 5º longitude by 4º latitude, and 12 pressure levels from 959 
hPa to 20 hPa. By activating the parameterization, which by default is turned off, the RRTMG 
shortwave parameterization infers the AOD from the combined effects of the species with their 
own assumed properties, and uses them to solve for diffuse and direct irradiance. The AOD values 
remain constant, or change slowly, throughout the simulation period. This climatology and simple 
parameterization of aerosol effects are expected to allow a better representation of the direct and 
diffuse radiation components; no known previous attempts have been made to assess its 
performance before this work because the direct and diffuse irradiances were not previously 
available as output. Monthly mean aerosols are potentially useful, but do not exploit current 
observations from satellites, surface networks, or from faster evolving analysis/re-analysis 
products. 
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WRF-Solar™ allows the user to impose evolving aerosol optical properties in the simulation 
(Ruiz-Arias et al. 2014), and considers humidity effects, to account for the aerosol direct effect. 
Parameterization of the effects of the aerosol optical properties on the radiation has been added to 
the Goddard (Chou and Suarez 1999; Shi 2010) and the RRTMG (Iacono et al. 2008) shortwave 
radiation codes. The parameterization requires the total AOD at 550 nm (visible), and specification 
of the type of predominant aerosol. Knowledge of the predominant aerosol type allows for 
estimation of the remaining aerosol optical properties, including the single-scattering albedo and 
the asymmetry factor. It also permits modeling the spectral variability with estimations of the 
Ångstrom exponent. The user can optionally provide the single-scattering albedo, asymmetry 
factor, and Ångstrom exponent rather than allowing the parameterization to infer them based on 
the predominant aerosol. Ruiz-Arias et al. (2013) present a comparison of the parameterization to 
observations, which indicates that the parameterization produces accurate estimations of surface 
irradiance given accurate aerosol optical properties.  

3.1.3 Cloud-Aerosol Feedbacks 

Prior to version 3.6, the standard WRF lacked representation of aerosol interactions with cloud 
processes. To enable cloud-aerosol feedbacks and maintain computational affordability for 
operational applications, WRF-Solar™ uses the simplified representation of the aerosol interaction 
with the Thompson microphysics scheme (Thompson and Eidhammer 2014). Aerosol species are 
classified into hygroscopic (attracting water) and non-hygroscopic (avoiding water) aerosols. The 
two species are currently initialized either from 1) a 3-D monthly climatology of the aerosol 
number concentrations generated from the Goddard Chemistry Aerosol Radiation and Transport 
(GOCART) model (Ginoux et al. 2001; Colarco et al. 2010); or from 2) instantaneous aerosols 
concentrations from chemistry models. The surface emission flux is represented by a variable 
lower boundary condition based upon the starting aerosol conditions and an assumed mean surface 
wind. 

As of the time of this writing, the combination of the RRTMG radiation scheme and the Thompson 
and Eidhammer (2014) microphysics scheme fully incorporates the first and second aerosol 
indirect effects (Twomey 1974; Albrecht 1989). This adaptation of the standard WRF was aimed 
at NWP and WRF-Solar™ applications, and resulted in minimal computational cost increase 
compared to running a full chemistry model, with a 16% increase in simulation time compared to 
the previous Thompson et al. (2008) scheme. Simulations of a large winter cyclone indicate the 
necessity of quantifying the benefits of the parameterization using long term simulations to 
robustly quantify model forecast errors and observational uncertainty (Thompson and Eidhammer 
2014). 

3.1.4 Cloud-Radiation Feedbacks 

Three further improvements in WRF close the aerosol-cloud-radiation feedback. First, consistency 
of the cloud particle distributions in the microphysics and radiation schemes is enforced. 
Historically, the cloud particle size for shortwave radiation calculations is imposed (i.e., the cloud 
effective radius is forced to remain constant) internal to a particular radiation scheme (Stensrud 
2007). This implicitly assumes that all clouds are homogeneous in terms of their radii. To provide 
a more physically consistent representation of the cloud-radiation feedbacks, WRF-Solar™ adopts 
the novel approach of passing the effective radius of the cloud droplets, ice and snow particles 
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from the microphysics to the radiation (both shortwave and longwave) parameterization schemes 
(Thompson and Eidhammer 2014; Thompson et al. 2015). This affects the cloud albedo and 
activates the aerosol indirect effects. 

Second, the AOD from combined hygroscopic and non-hygroscopic aerosol number 
concentrations in the aerosol-aware microphysics can be passed to the radiation scheme. The 
aerosols are advected with the model dynamics and, at a time step corresponding to a call to 
radiation physics, the extinction coefficient is computed and passed to the aerosol parameterization 
(Ruiz-Arias et al. 2014) for radiation. In this way, WRF-Solar™ provides a fully coupled 
representation of the aerosol-cloud-radiation system (Figure 3-1). 

The last development upgrades the feedbacks that sub-grid scale clouds produce in the shortwave 
irradiance. This effect is implemented in the shallow cumulus parameterization. The standard 
WRF model does not typically provide a cloud fraction from its shallow sub-grid convection 
parameterization options. WRF-Solar™ includes one shallow cumulus scheme previously 
implemented in the PSU-NCAR Fifth-generation Mesoscale Model (MM5) (Deng et al. 2003), 
which provides a cloud fraction for radiation. The Deng et al. (2003, 2014) shallow convection 
scheme is a mass-flux based scheme. It includes a cloud entraining/detraining model to represent 
updrafts, and it is triggered by factors including planetary boundary layer depth and turbulent 
kinetic energy (TKE). It uses a hybrid closure combining TKE and convective available potential 
energy, depending on the updraft depth. In addition to the updraft formulation, the scheme also 
contains two predictive equations for cloud fraction and cloud liquid/ice water content for 
neutrally-buoyant clouds (inactive clouds detrained from the active updraft core). Deng et al. 
(2014) shows that the scheme is able to produce reasonable cloud fractions, and reduce surface 
temperature bias. The benefits of the scheme for solar-energy applications are discussed on section 
2.5 

3.2 WRF-SOLAR™ ASSESSMENT UNDER CLEAR SKY CONDITIONS 

3.2.1 Experiment Details 

Six WRF-Solar™ experiments were completed to measure the importance of the aerosol direct 
effect on predictions of surface irradiance, and to investigate the sensitivity to aerosol optical 
property source and treatment. The first experiment (NO-AEROSOL) lacks any aerosol treatment. 
The second experiment (ECMWF-CLIM) activates the ECMWF monthly climatology. The third 
experiment (SCS-CLIM) adds two further potential improvements: a monthly aerosol dataset 
covering North America at high spatial resolution (0.05º latitude by 0.05º longitude) developed by 
Solar Consulting Services (SCS), and a more sophisticated aerosol property parameterization for 
the aerosol direct effect. The fourth experiment (GOCART-CLIM) uses the GOCART climatology 
to activate the feedback to radiation. GOCART-CLIM is the only experiment with aerosol 
advection, and the only experiment where the Thompson microphysics aerosols are also used for 
the direct effect. SCS-CLIM and GOCART-CLIM impose the total AOD at 550 nm using data 
from models that explicitly predict evolving atmospheric chemistry. The fifth experiment (MACC-
AOD) uses data from the ECMWF Monitoring Atmospheric Composition and Climate (MACC) 
reanalysis (Inness et al. 2013). MACC AOD is available globally every three hours at 1.115º 
latitude by 1.115º longitude, and here is linearly interpolated to hourly input to the WRF-Solar™. 
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The total AOD is a forecast variable starting from a 0000 UTC analysis and extending to 24 hours. 
The last (sixth) experiment (GEOS5-AOD) uses NASA’s Goddard Earth Observing System model 
version 5 (GEOS-5; Rienecker et al. 2000) analysis. The GEOS-5 product is global and available 
every three hours, and is also interpolated to hourly AOD. The horizontal resolution is greater than 
the MACC, at 0.5º latitude by 0.65º longitude. The experiments prescribing the AOD via the 
aerosol parameterization of WRF-Solar™ (i.e. SCS-CLIM, MACC-AOD, GEOS5-AOD) impose 
a rural-type (Shettle and Fenn 1979) predominant aerosol.  

The high-resolution aerosol dataset for SCS-CLIM is composed of the AOD at 550 nm and the 
Ångstrom exponent for each month of the period 2000-2014, and of the mean monthly single 
scattering albedo. The methodology is similar to that used previously by other authors (Kinne et 
al. 2003, 2006; Kinne 2009; Kinne et al. 2013; Pappas et al. 2013) to develop climatologies 
including AeroCom, Hamburg (Pappas et al. 2013), and Max-Planck-Institute Aerosol 
Climatology (MAC; Kinne et al. (2013)). They are composites based on remote-sensing 
observations (spaceborne MODIS spectrometers and ground-based AERONET sunphotometers) 
and predictions from various aerosol transport models. Here, special attention was devoted to large 
parts of western North America where the Dark Target (DT) MODIS algorithm was found to 
considerably overestimate AOD. Corrections to remove this bias over high-albedo areas 
(delineated from MODIS albedo data) were derived from a regional comparison with AERONET 
Level-2 data, Deep Blue MODIS data, MACC reanalysis, and the Hamburg climatology. The 
coarse spatial resolution (1º by 1º) of the original monthly gridded data was improved by 
combining a bi-linear interpolation at sea level, and a correction to account for topographic effects 
on the vertical aerosol profile, using an exponential scale height of 2.5 km. The Ångstrom exponent 
was obtained in a similar way, but without topographic correction. Among other differences with 
the MAC, the SCS dataset does not incorporate any specific AERONET data, and does not force 
local agreement with ground truth. 

Figure 3-3 compares the spatial variation of the AOD at 550 nm as obtained from monthly MODIS 
Terra (DT algorithm v5.1) and the SCS dataset at their respective spatial resolutions. This 
comparison is made for July in a climatological sense, i.e. considering the long-term 2000-2014 
mean. In Figure 3-3c, the time series of the monthly AOD obtained by AERONET (after 
appropriate spectral correction) is compared to the MODIS-Terra and the SCS data for Maricopa, 
Arizona. Maricopa is one of the areas where the MODIS DT retrievals show a notable high bias. 
The SCS climatology reduces the high AOD bias, providing a better comparison with the ground 
observations. 
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Figure 3-3. AOD at 550 nm from (a) MODIS and (b) the SCS dataset for the July climatology. The time series at 
Maricopa, AZ, are also shown together with the ground AOD observations in (c). This figure demonstrates that the 

SCS dataset successfully removes the anomalous high bias in the western U.S. 
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WRF-Solar™ was configured similarly to NOAA’s High-Resolution Rapid Refresh (HRRR) 
system, with the same physics schemes and on a domain covering the CONUS at 3-km horizontal 
grid spacing. One key difference from the HRRR is that our implementation calls the radiation 
code every 5 minutes compared to 30 minutes in the HRRR. Four periods of five consecutive days 
were selected for analysis in each season, for a total of 20 days. All days were during 2012 because 
this is the most recent year with MACC reanalysis products available. Analyses from the Rapid 
Refresh (RAP) model run by NCEP, with 13-km grid spacing, provided initial and boundary 
conditions every 3 hours. Analyses were used to limit forecast error growth in this evaluation of 
aerosol direct-effect treatment. Initialization was at 0000 UTC each day, and simulations 
proceeded for 30 hours to ensure a continuous daytime period in the simulations. 

Verification is performed against irradiance observations from the SURFace RADiation budget 
network (SURFRAD; Augustine et al. 2000, 2005). GHI, DNI, and DIF measurements are 
recorded every minute at seven geographically diverse sites across the CONUS. WRF-Solar™ was 
configured to output irradiance components at the SURFRAD sites at every model time step (20 
s), and then these 20-s values were averaged to 1-minute values. With the present focus on clear-
sky irradiance, the cloud-radiation feedback was deactivated. Verification samples were formed 
from all daytime minutes corresponding to clear skies in the observations, following Long and 
Ackerman (2000) to identify clear skies from observed GHI and DIF. 

3.2.2 Results 

An example demonstrates the expected effects of aerosols on clear sky irradiance. Aerosols absorb 
and scatter the incoming solar beam, reducing DNI and increasing DIF. Ignoring aerosols leads to 
systematic over-prediction of DNI and under-prediction of DIF. Figure 3-4a shows the observed 
irradiance during a nearly clear day at one SURFRAD site. Figure 3-4b shows the corresponding 
average errors (bias) for the NO-AEROSOL experiment. The simplest treatment for aerosols, 
ECMWF-CLIM, nearly eliminates the bias in DIF, and reduces the DNI bias magnitude (Figure 
3-4c). GHI is slightly overestimated, while DNI is slightly underestimated in the ECMWF-CLIM 
experiment. Bias in DIF is negligible. The impact on GHI is much weaker because absorption is 
small and scattering is highly peaked in the forward direction, but the GHI bias drops by more than 
10 W m-2. Bias in GHI should be the sum of the DNI and DIF biases, but is not because of 
observational errors. 

With few exceptions, the aerosol effect demonstrated in Figure 3-4 generalizes to the full clear-
sky data set and other aerosol treatments (Figure 3-5 and Figure 3-6). The GEOS-5 aerosols lead 
to the overall lowest bias magnitudes. Simulation at the SURFRAD site labeled GCM is especially 
challenging for most of the experiments; GEOS5-AOD is the only experiment providing results 
comparable to those at the rest of SURFRAD sites. It will be shown below that this is a 
consequence of accurate AOD at GCM in the GEOS-5. Although they improve on NO-
AEROSOL, the SCS-CLIM, GOCART-CLIM, and MACC-AOD experiments show too little DNI 
and too much DIF, thus indicating a high bias in the aerosol effect. A smaller magnitude impact 
on GHI is clear (Figure 3-5c), but the relative improvement from the aerosol effect is large (Figure 
3-6c). Results from GEOS-5 suggest that computationally expensive models that explicitly and 
accurately solve the atmospheric chemistry can be competitive with, or superior to, high-quality 
climatology products. 
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Table 3-1. RMSE in the surface irradiance components (W m-2). The relative improvement with respect to the NO-
AEROSOL experiment is shown in parenthesis. 

 

RMSE improvements show that bias reductions from including aerosols are responsible for most 
of the error reductions (Table 3-1). Again, runs imposing climatological properties of the aerosol 
provide similar results, which are superior to the MACC-AOD and inferior to the GEOS5-AOD 
experiments. Almost all the experiments that include atmospheric aerosols reduce the RMSE 
compared to the NO-AEROSOL run, agreeing with the bias improvements (Figure 3-5 and Figure 
3-6). The only exception is the RMSE of DNI for the MACC-AOD experiment. Poor performance 
at DRA, where MACC strongly overestimates AOD (Figure 3-5 and Figure 3-6), is responsible. 
Again, the largest improvements are found using the GEOS5-AOD, which shows improvements 
with respect the ECMWF-CLIM, the standard representation of aerosols in NWP models, of 38% 
and 40% for the DNI and DIF, respectively. 



The Sun4Cast Solar Power Forecasting System   

 

151 
 

 

Figure 3-4. a) Observed surface irradiance components and their biases from the b) NO-AEROSOL and c) 
ECMWF-CLIM experiments (see key on panel a). 
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Comparing temporal error variability from each experiment allows us to quantify the 
improvements associated with the AOD variability. Table 3-2 shows the standard deviation of the 
error defined as the differences between the simulation and the observations. Results from 
ECMWF-CLIM and GOCART-CLIM indicate that these experiments do not reduce the variability 
of the error, which indicates that the improvement in the errors (Table 3-1) is associated with a 
bias reduction. The variability of the error is higher in MACC-AOD than in the NO-AEROSOL 
experiment. On the contrary, SCS-CLIM and GEOS5-AOD reveal a reduction of the error 
variability. The GEOS5-AOD experiment shows the most error reduction compared to the standard 
approach, the ECMWF-CLIM experiment, by 35% and 37% for the DNI and DIF, respectively. 
The relative improvement of each model experiment is directly associated with accuracy in the 
aerosol optical properties. To verify this, the AOD recorded by the five multi-filter radiometer 
channels available at the SURFRAD sites (413.5 nm, 497.4 nm, 615.0 nm, 672.7 nm, 869.8 nm) 
was interpolated to the primary wavelength of 550 nm using the observed Ångstrom exponent. 
The estimates from the five channels were then averaged to derive a single value. Comparing these 
observations to the values extracted from the four data sets under scrutiny here shows that the 
AOD skill among the various experiments is ranked similarly to the irradiance prediction skill 
(Figure 3-7). 

The SCS-CLIM aerosol reproduces noticeable characteristics in the observed AOD, and agrees 
well with observations at certain sites (e.g. Figure 3-7e). The MACC-AOD and GEOS5-AOD both 
show temporal variability exceeding the observed AOD variability, with MACC-AOD 
additionally revealing a high bias. The GEOS5-AOD and SCS-CLIM both agree with observations 
better than MACC-AOD. This order is in agreement with the ability of the experiments to 
reproduce the observed surface irradiance (Figure 3-6 and Table 3-1), indicating that RRTMG 
properly accounts for aerosol effects when supplied with appropriate inputs. This confirms other 
recent results (Gueymard and Ruiz-Arias 2015). 
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Figure 3-5. Biases in the surface irradiance components over all clear sky minutes at each SURFRAD site. Results 
for the six numerical experiments are shown (see legend). 
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Figure 3-6. Improvements on the surface irradiance biases with respect to the NO-AEROSOL experiment for all 
clear-sky minutes. 
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Table 3-2. Standard deviation of the error in the surface irradiance components (W m-2). The relative improvement 
with respect to the NO-AEROSOL experiment is shown in parentheses. 

 

3.2.3 Comparison of WRF-Solar™ to Standard WRF 

To conclude the clear-sky assessment, a seventh numerical experiment summarizes the total effect 
of WRF-Solar™ (GEOS5-AOD) compared to the previous version of WRF that did not output 
separate irradiance components. The standard (baseline) WRF here is now defined as WRF-ARW 
version 3.5.1 with two modifications. First, the correction to the sun position algorithm was 
removed because it is part of the WRF-Solar™ effort. Second, code to output surface irradiance at 
the SURFRAD sites and at every model time step is added to enable direct comparison to WRF-
Solar™. WRF-ARW version 3.5.1 already included the WRF-Solar™ capability to output the 
direct and diffuse radiation components. Another difference with respect to the NO-AEROSOL 
experiment is that the standard WRF v3.5.1 does not include the interpolation of the modeled 
irradiance between radiation calls. 
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Figure 3-7. Total AOD at 550 nm from the different experiments at the SURFRAD locations with AOD records 
available. 

Figure 3-8 shows the decrease in RMSE in WRF-Solar™ simulations compared to those from the 
standard WRF. Consistent with earlier results, WRF-Solar™ improves the GHI, DNI, and DIF 
under clear-sky predictions at all SURFRAD sites. On average, GHI is improved by 46%, DNI by 
60%, and DIF by 70%. 
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Figure 3-8. Improvements introduced by WRF-Solar™ (experiment GEOS5-AOD) in the estimations of the clear-
sky surface irradiance components at the SURFRAD sites. The standard WRF simulations are used as a baseline for 

comparison. 

3.3 PRELIMINARY ASSESSMENT OF CLOUD-AEROSOL FEEDBACKS 

The potential benefit of activating the cloud-aerosol feedbacks were examined in a preliminary 
sensitivity study. Two WRF-Solar™ experiments were performed. The first one is the reference 
experiment (EXP1). EXP1 does not account for the aerosol indirect effects (cloud-aerosol 
feedbacks) and represents the aerosol direct effect via the ECMWF monthly climatology (Tegen 
et al. 1997). EXP1 is therefore the standard representation of aerosols in NWP models. 

The second WRF-Solar™ experiment (EXP2) activates both the aerosol direct and indirect effects 
using the WRF-Solar™ augmentations described in above. Based on the good performance of the 
GEOS5-AOD experiment in clear skies we initialized the aerosol number concentration using the 
Modern Era Retrospective analysis for Research Applications Aerosol Reanalysis (MERRAero; 
Buchard et al. 2014, 2015, 2016) that uses the GEOS-5 model. In a first step, we replicated the 
clear sky experiment described in the previous section using a lower horizontal resolution (9 km). 
The comparison of the biases in the surface irradiances for the previous NO-AEROSOL and 
GOCART-CLIM experiments together with the new MERRAero experiment are shown in Figure 
3-9. The MERRAero experiment also reduces the biases of the NO-AEROSOL experiment and 
shows similar performance that the GOCART-CLIM experiment. This indicates that WRF-
Solar™ coupled with MERRAero reproduces the clear sky surface irradiances and motivated the 
analysis under all sky conditions. 

The performance of WRF-Solar™ in all sky conditions is investigated with two one-way nested 
domains with a three-to-one spatial refinement in order to reach a grid spacing of 3 km over 
CONUS. Data from the ERA-Interim reanalysis (Dee et al. 2011) was used to generate the initial 
conditions and the boundary conditions that were updated every 6 hours. 
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The WRF-Solar™ simulations in EXP1 and EXP2 span the period from 12 February 2015 to 27 
August 2015. There are 29 simulations per experiment. The first simulation is initialized on 12 
February 2015 at 0000 UTC and WRF-Solar™ is run for 30 hours in order to have a simulation of 
a complete diurnal cycle after several hours of model spin-up. There is an additional simulation 
every week in order to span the complete period under investigation.  

The simulations are evaluated against irradiance observations from the SURFRAD (Augustine et 
al. 2000, 2005) and the Integrated Surface Irradiance Study (ISIS; Hicks et al. 1996) networks. In 
order to mimic the observational spatio-temporal coverage, the WRF-Solar™ irradiances are 
recorded every model time step (20 s) at the 14 observational sites, and are subsequently averaged 
to match the 3-minute data from the ISIS network. The 1-minute data from the SURFRAD network 
is also averaged to 3-min. 

Preliminary results are presented in Figure 3-10 that shows the bias in the surface irradiances 
calculated with the observations/simulations at the 14 sites. Both EXP1 and EXP2 show similar 
performance with a positive bias in the DNI and GHI and a negative one in DIF. This result is 
encouraging given the complexity of modeling the cloud-aerosol-radiation system.  

We are in the process of extending the simulation to span the complete calendar year of 2015 in 
order to have representation of winter months. It is also under consideration to span the simulation 
another year (possibly 2014) in order to enlarge the dataset. In addition, we would like to 
investigate the impact of the aerosol aware scheme for days with heavy loads of aerosols wherein 
the impact of the aerosol effects is larger. 
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Figure 3-9. Biases in the a) GHI, b) DNI and c) DIF for different experiments (see legend in panel a). 



The Sun4Cast Solar Power Forecasting System   

 

160 
 

 

 

Figure 3-10. Bias in the surface irradiances (see legend) from EXP1 (thin colored lines) and EXP2 (thicker colored 
lines highlighted in black) as a function of the lead time. 

3.4 QUASI-OPERATIONAL WRF-SOLAR™ FORECASTS 

WRF-Solar™ has been run quasi-operationally over CONUS since 2015. There is one domain of 
3 km of horizontal resolution and two domains of 1 km over regions with solar farms, the San Luis 
Valley in Colorado and SMUD in California. There is one run per day configured to meet 
operational needs of the private partners of the project. The run targets the day-ahead forecast. The 
model is initialized at 0000 UTC and is run for 54 hours in order to provide a day-ahead forecast 
available at the beginning of the morning. The model therefore runs during the night period and 
thus the latency of the system is not relevant. The computational cost of activating the 1-km 
domains is high so these high-resolution domains are only activated during the daytime of the 
second day of the simulation. The model is initialized with RAP forecasts and it uses both RAP 
and GFS forecasts to create the boundary conditions. If the RAP forecast is not available at the 
beginning of the simulation the system only uses GFS forecast data. The model output is saved 
every hour and passed to the DICast® integrator (Chapter 4).  

3.5 CONCLUSIONS 

The WRF-Solar™ augmentations to the WRF model, described here, have resulted in the first 
NWP model specifically designed to meet the growing demand for specialized forecasting 
products associated with solar power applications. The model includes representation of aerosol-
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cloud-radiation feedbacks, and efficient numerical approaches to support operational forecasting. 
The clear sky assessment reveals large improvements compared to irradiance from the standard 
WRF. Sensitivity to details of the source of aerosol information emphasizes the importance of 
accurate aerosol optical properties for accurate estimates of surface irradiance. Models that 
explicitly solve atmospheric chemistry equations, and are initialized with an aerosol data 
assimilation process (i.e., GEOS-5), appear the most useful for clear-sky solar irradiance. In 
particular, imposing the temporal variability of the AOD produces large improvements in DNI and 
DIF with respect to the more typical use of aerosol climatologies. 

Current developments focus on comparing forecasts and actual solar power production to precisely 
evaluate the model performance under all sky conditions (including cloudy periods such as the 
cloud-aerosol feedbacks). Further modeling advances in WRF-Solar™ are expected from these 
efforts, and should enhance the specific clear sky improvements highlighted here. Combined with 
the ability to output high-frequency irradiance time series, the new WRF-Solar™ should prove 
helpful to the growing solar industry in general, and contribute to better cloud, aerosol, and solar 
forecasts in general. 

A comprehensive evaluation of the WRF-Solar™ model performance during the quasi-operational 
forecast is presented in chapter 5. 

3.6 PUBLICATIONS BASED ON THIS WORK 
Journal Papers 

Jimenez, P.A., S. Alessandrini, S.E. Haupt, A. Deng, B. Kosovic, J.A. Lee, and L. Delle 
Monache, 2016:  Role of Unresolved Clouds on Short-Range Global Horizontal Irradiance 
Predictability, submitted to Monthly Weather Review. 

Jimenez, P.A., J.P. Hacker, J. Dudhia, S.E. Haupt, J.A. Ruiz-Arias, C.A. Gueymard, G. 
Thompson, T. Eidhammer, and A.J. Deng, 2016:  WRF-Solar™: An Augmented NWP 
Model for Solar Power Prediction, Bull. Amer. Met. Soc, in press. 

Ruiz-Arias, J. A., J. Dudhia, and C. A. Gueymard, 2014: A simple parameterization of the 
shortwave aerosol optical properties for surface direct and diffuse irradiances assessment in 
a numerical weather model. Geoesci. Model Dev., 7, 1159–1174. 

Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation 
development in a large winter cyclone. J. Atmos. Sci., 71, 3636–3658. 

Xie, Y., M. Sengupta, and J. Dudhia, 2016: A Fast All-sky Radiation Model for Solar 
Applications (FARMS): Algorithm and performance evaluation. Solar Energy (Under 
review). 

Conference Presentations 

Jimenez, P.A, and S.E. Haupt, 2016: WRF-Solar enhancements of the aerosol-cloud-radiation 
system in support of solar power forecasting. Atmospheric Radiation Science Workshop, 
Boulder, CO, March 9. 



The Sun4Cast Solar Power Forecasting System   

 

162 
 

Jimenez, P., S. Alessandrini, S.E. Haupt, and A. Deng, 2016: Accounting for the Effects of 
Unresolved Clouds in the Shortwave Irradiance Forecast of the WRF-Solar Model to 
Improve Solar Power Forecasts, Seventh Conference on Weather, Climate, Water, and the 
New Energy Economy, AMS Annual Meeting, New Orleans, LA, Jan. 11. 

Jimenez, P.A., S.E. Haupt, J.P. Hacker and J. Dudhia: WRF-Solar: Upgrading the WRF 
representation of aerosol-cloud-radiation feedbacks in support of solar energy forecasting. 
Poster. AGU Fall Meeting, San Francisco, CA, December 14. 

Jimenez, P.A., S.E. Haupt, J.P. Hacker, J. Dudhia, 2015:  WRF-Solar: An Augmented NWP 
Model for Solar Power Prediction. International Conference on Energy and Meteorology, 
Boulder, CO, June 24. 

Jimenez, P.A., S.E. Haupt, J.P. Hacker, J. Dudhia, 2015:  WRF-Solar: Improvements to WRF for 
real-time solar energy forecasting applications and its evaluation. WRF Users’ Workshop, 
Boulder, CO, June 16. 

Jimenez, P.A., S.E. Haupt, J. Hacker, and J. Dudhia, 2015: WRF-Solar to Advance Solar Power 
Forecasting, Sixth Conference on Weather, Climate, and the New Energy Economy, AMS 
Annual Meeting, Phoenix, AZ, Jan. 6. 

Deng, A., B. Gaudet, J. Dudhia, and K. Alapaty, 2014: Implementation and evaluation of a new 
shallow convection scheme in WRF. 26th Conf. on Wea. Anal. and Forecast./22nd Conf. on 
Numer. Wea. Pred. at the 94th Amer. Meteor. Soc. Annual Meeting, Atlanta, GA, 2-6 Feb 
2014. Preprint available at 
https://ams.confex.com/ams/94Annual/webprogram/Paper236925.html.  

https://ams.confex.com/ams/94Annual/webprogram/Paper236925.html


The Sun4Cast Solar Power Forecasting System   

 

163 
 

4 ENGINEERING 

4.1 OVERVIEW 

The overarching concept for the Sun4Cast®  system is to blend various forecasting models to 
provide a best consensus-based forecast over all timeframes. Using multiple models is an 
important part of this concept and is a “best practices” approach to modern meteorological 
prediction (Young 2001; Mahoney et al. 2012; Orwig et al. 2014; Tuohy et al. 2015; Haupt and 
Mahoney 2015). The Sun4Cast®  system (Figure 4-1) has two main forecast modules, a Nowcast 
track that forecasts at high temporal resolution extendingto 6 hours, and a Dynamic Integrated 
ForeCast (DICast®) modules that forecasts at coarser temporal resolution out several days. Both 
these modules apply a consensus forecasting approach. That is, they consider multiple inputs and 
perform a forecast integration that takes advantage of the strengths of each input. While the 
consensus forecasting approach has been applied to forecasting more common weather variables 
(e.g., air temperature), it has not been applied to solar irradiance forecasting in any significant way. 
No other public systems use a consensus forecasting approach. In the private sector, some 
companies may use a consensus approach, while others rely on a single source model; much of 
this is proprietary and not disseminated.  

This project sought to demonstrate the advantages of consensus forecasting. Raising the awareness 
of these basic advances can benefit the industrial forecast developer community and ultimately 
create more competition in the solar forecasting sector. Through the initial development of this 
project, one critical hypothesis that needed investigation was, “Does the consensus forecasting 
approach work for solar irradiance?” Preliminary results indicate that the DICast® consensus 
forecast can reduce the global horizontal irradiance (GHI) errors about 15% when compared to the 
best (single model) ingredient forecast.  

Experience from forecasting other meteorological variables indicates that the best single model 
varies seasonally. These consensus forecast systems are developed using machine learning 
techniques that continually adapt and learn how to produce a forecast that is better than its 
ingredients. Clearly this reduction in error demonstrates how these systems address the need for 
improvement in solar forecasting. The nowcast integrator is the core piece of technology that 
blends multiple input nowcasts. We developed an operational system that demonstrates a reduction 
in error when compared to single nowcast inputs. While the aforementioned preliminary results 
apply to the day-ahead forecasts, this is seminal work in the short-range forecast arena.  

Through development of other consensus forecast systems, there is a well-established 
methodology of forecast verification. The verification software that was developed calculates 
statistics and also identifies outliers. These are forecasts that poorly match the observations. This 
can either be due to poor forecasts or bad observation data. Both are useful for debugging, 
developing improved quality control (QC) algorithms for observations, and/or investigating 
forecast algorithmic improvements. The forecast error statistics evolve seasonally. This makes it 
difficult to make gross statements, on topics such as forecasts getting better each month.  

When blending multiple models, it is common to have missing data from either in situ observations 
or from at least one of the models. It requires detailed systems engineering to assure that such 
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situations are dealt with appropriately in real-time. To that end, the systems engineering includes 
quality control/quality assurance algorithms to assure that the model and observational data used 
in the forecasts are within appropriate bounds. Where data are missing or only partial data or model 
outputs are available, the algorithms are able to use alternate methods to provide forecasts. This is 
actually one advantage of using multiple models for a consensus forecast: there are surely at least 
some model data available and, in the case of failure to obtain any model data, the forecast could 
be made with the last model data available. Such an approach to engineering a forecast system 
uses the concept of measured planned degradation when certain portions of the input stream may 
not be available or fail the QC criteria. 

A big portion of the engineering is data management: ingest, formatting, QC, blending, output, 
and transmittal to the end user. To make the data streams available for the blending process 
requires substantial system engineering. This process requires careful logistics to process large 
amounts of model and observational data and to assure that all of it is available to the blending 
models on request. The model data are integrated on a dedicated server at NCAR. DICast® and 
the nowcasting blending algorithms have access to these data streams and these forecast streams 
were also made available to the forecast provider partners. The output of the blending technology 
was provided to the utilities and ISOs.  

The meteorological irradiance values are not the final output variables. Utilities require a power 
prediction, meaning that an irradiance-to-power conversion step must be added. A model 
regression tree (Cubist) is used in Sun4Cast®  to train the relationship between the measured 
irradiance value and the coincident power produced. The empirically derived relationship is then 
applied in real-time to the irradiance forecast to produce a power forecast. A separate power 
conversion algorithm must be trained for each solar forecast site. Once the training/testing 
procedure is accomplished, the algorithm’s real-time application runs in a matter of seconds. 

Finally, probabilistic forecasts have been requested by partner utilities. NCAR applies the Analog 
Ensemble (AnEn) approach to produce an appropriate probability density function (pdf) of the 
forecast uncertainty. The Analog Ensemble searches for similar forecasts made in the past under 
meteorological conditions analogous to today’s forecast. Thus, we wish to identify such analogs 
in those past forecasts in order to: 1) further correct today’s forecast, which improves the 
deterministic forecast, and 2) produce a pdf of multiple analogs to estimate the uncertainty of the 
forecast. This flow-dependent uncertainty has been shown to reproduce the forecast and its 
statistical reliability at least as well as the full ensembles of runs produced at the operational centers 
(see section 4.6 for additional discussion of AnEn). 

NCAR produced these probabilistic solar power forecasts in quasi-operational mode hourly and 
made them available to the utility and ISO partners for a year in order to provide sufficient data 
for a full assessment. Preliminary results indicate that each component improves upon baseline 
forecasts and has a “sweet spot” where that component often produces the best forecast and 
contributes to an improved forecast.  

The forecast system has been operating in a quasi-operational status of blending all portions of the 
systems described above. Just as the input systems continue to improve, the blending systems adapt 
to that improvement through updating the weights assigned to the various systems as their skill in 
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matching the observations becomes more apparent with time. This has been a dynamic process 
that assures continual improvement throughout the project. 

The current version of the engineered Sun4Cast®  system appears as Figure 4-1. A simplified view 
is provided as Figure 4-2. 

 

 

Figure 4-1. The engineered Sun4Cast®  system. 
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Figure 4-2. Simplified depiction of Sun4Cast®  Forecasting System. 

4.2 THE NOWCAST SYSTEM 

As described in Chapter 2, the Nowcast System is composed of various models and each displays 
a “sweet spot” in terms of metorological conditions or lead time for producing a most accurate 
forecast. These nowcasting methods leverage a variety of disparate observational data, statistical 
and computational intelligence methods, and physical understanding of the atmosphere to produce 
a “best practices” blended forecast. The Nowcast systems are integrated using a unique Nowcast 
Expert System Integrator (NESI) that utilizes the recent performance scores of each component 
model, whether it is based on ground-based cloud observations and computational intelligence 
methods (StatCast and TSICast), on satellite cloud observations (CIRACast), or includes NWP 
components (MADCast and WRF-Solar-Now). Although the Nowcast system is currently 
optimized via an expert system, dynamic automated methods are expected to be useful future 
applications. Thus, the NESI component of Sun4Cast®  is a collection of individual short-term 
forecasts that use a variety of techniques, each with its own strength, especially over specific 
forecast lead times. As a consequence, the NESI combines the individual nowcasts into a single 
forecast for each site as a function of lead time, using a weighted sum of the individual forecasts. 
The integrated Nowcast GHI forecast (in addition to plane of array (POA), direct normal irradiance 
(DNI), and diffuse irradiance (DIF) where available) extends to 6 hours at 15-minute resolution. 
Figure 4-3 illustrated the nowcast blending. NESI is a unique aspect of the Sun4Cast®  system. 
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Figure 4-3. The Nowcasting integrated forecast. 

4.3 DICAST  

NCAR’s DICast® system constitutes the core of the day-ahead capability of Sun4Cast®  and also 
supplies value over all time periods (Myers et al. 2011, 2012). DICast® produces automated 
forecasts using a method that was designed to emulate the human forecast process. It generates 
forecasts by optimizing the combination of NWP model data through developing empirical 
relationships gleaned from historical model output and observations. DICast® typically reduces 
error by about 10-15% as compared to the best individual input model. DICast® employs a two-
step process: it first statistically corrects the bias of each input model using Dynamic Model Output 
Statistics (DMOS) (Glahn and Lowry 1972), secondly, it optimizes the model blending weights 
for each lead time, producing a consensus forecast. DICast® typically works with up to 90 days 
of data; this is an advantage because many other methods require a year or more of data for training, 
during which time some of the models may have been modified or upgraded, making the training 
process difficult. A variety of weight calculation approaches are possible. These are compared and 
summarized by Young (2002), Greybush et al. (2008), and Myers et al. (2011, 2012). The adaptive 
learning approach is computationally simple and robust, can easily adapt to the addition of new 
input forecast models or the removal of obsolete models, and can easily evolve weights for new 
sites (Myers et al. 2011, 2012). 

DICast creates its consensus as a bias-corrected weighted sum of input forecasts.  

F = ( Σ wi fi  ) / (Σ wi  )  +   Bias                                          (4-1) 
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where  are the forecast values and  are the weights. Missing forecasts are removed from the 
consensus. This is a computationally simple, yet effective, forecast combination method. More 
complex combination schemes are possible, but in our experience, the marginal improvement does 
not merit the additional complexity. 

Each day, the weights are modified in the direction of the gradient in weight space. That is, the 
vector of weights is nudged in the direction of steepest descent of the error (the difference between 

the verification  and the forecast values):  

                                                          (4-2) 

The step length S is a parameter determined by the user to affect how quickly the system adapts. 
The choice of S effectively is a trade off between the initial discovery of the optimal combination 
and the daily update magnitude. Unless the step size is too large, the updated weights would have, 
by design, led to a forecast with a smaller error had they been used for the previous day’s forecast. 
There is also a cap on the magnitude of any change so that one day’s missed forecast does not 
completely alter a set of weights that work reasonably well. 

In this way, the DICast® integrator never attempts to directly calculate the optimal set of weights. 
Instead it takes an approach of pursuing the location of the minimum error. The location of the 
minimum is rarely stationary. It changes daily. In a larger sense, the nexus of the optimal vector 
changes seasonally to capture the variability in the models’ skills. Other weight calculation 
approaches that examine a longer history require more computational resources. Due to the daily 
variability in model skill and observational representativeness, this additional computational cost 
is not merited. 

The DICast® system used in Sun4Cast®  combines forecasts from multiple numerical weather 
prediction (NWP) models in an optimal way to produce tuned irradiance forecasts at specific 
locations and forecast projections. The system uses a history of observations and model runs to 
determine the performance of each model, then weighs each model based on its relative 
performance. The resultant integrated forecast produces lower error characteristics than if one used 
the best-performing individual model over the time period. 

DICast® has been applied to many forecasting problems, including transportation (Drobot et al. 
2010; Chapman et al. 2010), agriculture, and wind energy (Mahoney et al. 2012; Haupt and 
Mahoney 2015). For Sun4Cast® , the DICast® system was modified to produce tuned hourly-
averaged GHI, DNI, and POA forecasts extending to three days at 15-minute intervals. The 
DICast® system was modified to handle new irradiance variables from the various input NWP 
models, and also to ingest irradiance observations from partner solar installations. These 
observations provide the tuning capability for the system to be able to produce the optimized 
forecasts. Figure 4-4 illustrates the DICast® consensus system and its inputs employed for 
Sun4Cast® . 
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Figure 4-4. Diagram of the inputs to and output from the DICast® integrator in the Sun4Cast®  day-ahead system. 

4.4 BLENDING NOWCAST AND DICAST® SYSTEMS 

The Nowcast forecast is blended with the DICast® forecast to create a unified Sun4Cast®  forecast 
for each site over the whole forecast period, from 0 to 72 hours, and can be extended as far as 168 
hours. Before this blending is performed, the DICast® forecast is interpolated from hourly to 15-
minute intervals to match the Nowcast forecast interval. This ‘smart’ temporal interpolation is 
performed using cloud cover forecasts at the nearby hours to influence each 15-minute interval. 
Once the two forecast subsystems match temporal resolution, they are blended together over three 
different forecast periods: 100% Nowcast from 0-3 hours, a decreasing Nowcast/increasing 
DICast® linear blend from 3-6 hours, and then 100% DICast® from 6-72 hours. Figure 4-5 
illustrates the blending concept. 
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Figure 4-5. Blending the Nowcast and DICast forecasts 

4.5 POWER CONVERSION  

4.5.1 Irradiance to Power Conversion Model Creation 

Predicting irradiance is a step toward predicting power, the variable that the utility and balancing 
authority actually need in order to plan day ahead unit commitment and balance the grid in real-
time. The power conversion depends on the particular type of hardware installed at the solar farm 
as well as local conditions. There are models such as PVWatts (http://pvwatts.nrel.gov/) that can 
do this power conversion. In prior work with wind energy, however, we have found that empirical 
power conversion methods can outperform models (typically power curves for wind energy) 
because they take into account local effects such as terrain blocking, impact of upstream turbines, 
density, etc. (Parks et al. 2011). For solar energy, such effect could include dust, shadowing, etc. 
that cannot be captured in any general model. Our experience in this project also indicates that it 
may be difficult to obtain the metadata required for PVWatts (such as panel tilt, etc.). Thus, as part 
of this project, we have developed empirical methods to use across a broad range of solar 
technologies and geographic locations. 

The project team developed such empirical models to convert irradiance to power. The philosophy 
is that rather than specifying the physics, one obtains a sufficiently long time series of matched 
irradiance and power output data, and then trains an artificial intelligence model to predict power 
from irradiance. This approach is straightforward and it is typically superior to more direct 
prediction methods. Specifically, NCAR has applied regression tree analysis to train conversion 
algorithms to best match historical observed irradiance/power relationships. 

http://pvwatts.nrel.gov/
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4.5.2 Power Conversion Methodology 

The solar power forecasting system forecasts power generation in two stages. The first stage 
involves forecasting an irradiance component such as GHI. The second stage involves converting 
the forecasted irradiance to power. In order to convert the forecasted irradiance to power, empirical 
data consisting of (irradiance, power) pairs are gathered over a sufficiently long period of time for 
an individual solar farm. These data pairs are then utilized to create an irradiance-to-power 
conversion model for that farm. 

4.5.2.1 Data 

The data needed to create an irradiance-to-power conversion model consist of observations of 
irradiance (GHI, DNI, or POA) matched with observations of power. When matching the 
observations, we chose to average the values over a fixed time interval. This process ensured that 
observations were matched to a common time and eliminated issues related to differing data update 
rates and mismatched observations. It is best to have the observations on the same time scale as 
the forecast, i.e., for forecasts every 15 minutes, having matching observations of irradiance and 
power every 15 minutes is ideal. For the majority of the models we created this was possible. 
However, for a few farms this was not the case and observations were matched on an hourly basis. 
Data were collected for the various farms over periods of one year and extending to three years, 
with a longer history of data producing a more robust model. 

The model training data set consisted of matched irradiance and power observations along with 
information about the hour of day, the day and week of the year for the data, as well as values for 
the solar azimuth and solar elevation for the observation location and time. 

Plots of observed irradiance vs. power (Figures 4-6 through 4-10) were created for each farm to 
get a sense of the data and its quality. The scatter plots on the left provide information regarding 
the spread of the data, including outliers. Multiple irradiance-power data points in the same 
location cannot be discerned in these plots, and they do not elucidate how the data is distributed 
within the covered area. The density plots on the right show the counts of data binned into 
irradiance-power boxes, therefore indicating how the data within the scatter plot is distributed, 
making it easier to identify outliers in the dataset. Different farms exhibited different relationships 
between irradiance and power. This is likely due to the solar panel hardware including the solar 
panel tracking employed, and the solar farm environment. Figure 4-6 though Figure 4-8 all show 
irradiance vs. power for farms that have GHI observations, while Figure 4-9 is for a farm with 
POA observations. Due to the non-linear nature of the relationship shown in Figure 4-7 and Figure 
4-8 we realized that irradiance alone would not be a good predictor of power.  
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Figure 4-6. Irradiance vs. power observations scatter and density plots for one farm showing GHI relating to power 

in a somewhat linear way. 

 
Figure 4-7. Irradiance vs. power observations scatter and density plots for one farm showing GHI relating to power 

along two distinctly different patterns. 

 
Figure 4-8. Irradiance vs. power observation scatter and density plots for one farm showing GHI relating to power 

in multiple and distinctly nonlinear ways. 
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Figure 4-9. Irradiance vs. power observation scatter and density plots for a single farm showing POA relating to 

power in a mostly linear way. 

4.5.2.2 Quality Control 

Quality control issues with the data are prevalent and quality controlling the training data set 
consisting of matched irradiance and power observations is critical. Obvious issues includedcases 
in which one of the values from either the irradiance or power were stuck on a specific value while 
the other fields continued to vary. This can be seen clearly in Figure 4-7 and Figure 4-9 above. 
Another frequent occurrence was power values of 0 with varying irradiance, and vice-versa. 
Plotting the matched irradiance and power values illuminated these issues but also displayed some 
values falling outside the standard envelope of observations for each specific farm. Constant values 
along with any values outside the standard envelope of observations for each particular farm were 
eliminated from the training set. Figure 4-10 shows the quality-controlled irradiance vs. power 
observations for the same farm as in Figure 4-9. Plotting power verses solar elevation also showed 
some observations with large power values but below zero solar elevation. These few observations 
were also eliminated. 

 
Figure 4-10. Quality-controlled POA vs. power observation scatter and density plots – compare to Figure 4-9. 
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4.5.2.3 Model Creation 

The irradiance-to-power conversion models were created using the rule based regression tree 
software package Cubist by RuleQuest, which is Quinlan’s (1987a,b, 1992, 1996) M5 model tree 
formatted as a set of rules (Kuhn et al. 2012). Cubist was chosen due to the previous success of 
using the software to create wind-to-power conversion models for other renewable energy 
applications, along with familiarity and ease of use. A different model was created for each solar 
farm, with some models using different predictor variables. In general, irradiance was always used 
along with variables that identified time and season. Some combination of hour of day, day and 
week of year, solar elevation and azimuth were used in each model. Our models also took 
advantage of the Cubist option to create a committee model, which allows for a group of several 
rule based models to be created that each predict the target value, with the final answer being the 
average of all the rule based models predictions. Each subsequent committee member model after 
the initial rule based model attempts to correct the errors from the previous model. The committee 
models appeared to provide a smoother forecast prediction through time when compared to a basic 
single rule-based model. Other options, such as using a nearest neighbor from the training set to 
modify the prediction, were considered but did not seem to improve the final forecast and were 
ultimately discarded. 

4.5.2.4 Software Module 

The data mining models developed for the different solar farms are then utilized operationally by 
the power conversion software system module. The module ingests the latest irradiance forecast 
input and then matches solar farm site identifiers to appropriate data mining models for the specific 
solar farms. The forecast irradiance measurements are then converted to power by applying the 
appropriate data mining models. Note that the software module is applying a perfect prognosis 
(“perfect prog”) approach since the data mining models utilize actual observed irradiance values 
instead of forecast irradiance values for training. 

4.5.2.5 Initial Evaluations 

Statistics and case studies were used for the initial evaluations of the power conversion models. In 
order to evaluate and compare different potential models, the matched irradiance-power data set 
for each farm was divided into roughly two-thirds training and one-third testing sets using the 
division of cycling through each day of the year and placing data from every third day in the test 
set, leaving the remaining days for training. With this division, models could be trained on a 
disjoint set of data from which they would be evaluated. For the final models used in operation, 
however, all data were used for the model creation. In general, the power conversion errors for the 
different models were very low (between 1-3%), and did not differ much between the training and 
test sets. Table 4-1 shows the training and test set errors for several of the farms. Errors for all data 
as well as for data with power values above 15% of the farm capacity are shown.  
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Table 4-1. Training and test set Errors for several farms 

Farm Training set 
% 
Capacity 
MAE 

Test Set % 
Capacity 
MAE 

Training Set % 
Capacity 
MAE for 
observations 
> 15% 
Capacity 

Test Set % 
Capacity 
MAE for 
observations 
> 15% 
Capacity 

A 2.6 3.1 4.7 5.7 
B 1.5 2.1 3.7 5.2 
C 1.0 1.3 2.4 3.0 
D 1.1 1.3 2.1 2.7 
E 2.6 4.4 2.9 4.8 

 

Case study plots showing forecasted irradiance and power along with the corresponding 
observations were also used in evaluations of the power conversion models. Comparing the 
observed and forecasted power for specific cases where the forecasted irradiance closely matches 
the observed irradiance give a good indication of the skill of the power conversion model. Figure 
4-11 and Figure 4-12 are both good examples in which forecast irradiance and power both closely 
match the observations, alluding to good power conversion model performance. Figure 4-12 shows 
some difference between the forecast and observed irradiance but, as expected, that same 
difference is seen in the forecast and observed power. Figure 4-13 shows a slight difference 
between the forecasted and observed irradiance at the beginning of the day but matches well for 
the second half of the day. For this farm the power forecast matches observations closer at the 
second half of the day as well, however, the forecast is not as smooth through time as the power 
observations. This may be due to this farm’s power and irradiance observations not being as 
linearly related as the farms shown in Figure 4-11 and Figure 4-12, as can be seen in Figure 4-7 
above, making the power conversion more challenging. Further research should be performed to 
determine the exact cause for the conversion error in order to improve this conversion model.  
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Figure 4-11. Irradiance and power forecasts and observations for a farm with GHI observations. 

 
Figure 4-12. Irradiance and power forecasts and observations for a farm with plane of array observations. 

 
Figure 4-13. Irradiance and power forecasts and Observations for a farm with GHI observations. 

4.6 PROBABILISTIC PREDICTION: THE ANALOG ENSEMBLE (ANEN)  

4.6.1 Motivation and Introduction to AnEn 

The energy produced by solar photovoltaic farms has a variable nature depending on astronomical 
and meteorological factors. The former are the solar elevation and the solar azimuth, which are 
easily predictable without any uncertainty. The amount of liquid water (i.e., clouds) met by the 
solar radiation within the troposphere is the main meteorological factor influencing the solar power 
production, as a fraction of shortwave solar radiation is reflected by the water particles and cannot 
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reach the earth’s surface. The total cloud cover is a meteorological variable often used to indicate 
the presence of liquid water in the troposphere. Cloud cover has a limited predictability, however, 
which is also reflected in the GHI and, as a consequence, in solar PV power prediction. This lack 
of predictability makes solar energy integration into the grid challenging. A cost-effective 
utilization of solar energy over a grid strongly depends on the accuracy and reliability of the power 
forecasts available to the transmission system operators (TSOs), both for intra-day and day-ahead 
forecasts (e.g., Feruzzi et al. 2016). Furthermore, several countries have in place legislation 
requiring solar power producers to pay penalties proportional to the errors of day-ahead energy 
forecasts, which makes the accuracy of such predictions a determining factor for producers to 
reduce their economic losses.  

Predictions can be categorized into deterministic and probabilistic forecasts. A deterministic 
forecast consists of a single predicted value of the variable for each prediction time, while 
probabilistic forecasting provides probability density functions (PDFs) from which probabilities 
of future outcomes can be estimated. Probabilistic forecasts also provide information about 
uncertainty in addition to the commonly provided single-valued (best-estimate) power prediction.  

There are many examples of how probabilistic predictions can provide a higher value than 
deterministic ones. For instance, one example is estimating the optimal level of reserves that need 
to be allocated to compensate for wind and solar power variability and their limited predictability, 
as discussed in Doherty and O'Malley (2005). Another significant application is when renewable 
energy is traded in day-ahead electricity markets. In Roulston et al. (2003) it is shown that trading 
future wind energy production using probabilistic wind power predictions can lead to higher 
economic benefits than those obtained by using deterministic forecasts alone. Indeed, the 
maximum income for a producer is obtained by offering in the day-ahead market an amount of 
energy that can be different from the most expected one. 

The AnEn is based on an historical set of deterministic predictions of meteorological variables and 
solar power (predictors) and observations of the solar power. For each forecast lead time t, the 
AnEn set of solar power forecasts is constituted by solar power observations from the past. These 
observations are those concurrent with the past forecast at the same lead time, chosen across the 
past runs most similar to the current forecast. The metric used to rank past forecasts’ similarity to 
the current forecast is defined as 

 ‖𝐹𝐹𝑡𝑡,𝐴𝐴𝑡𝑡‖ = ∑ 𝑤𝑤𝑖𝑖
𝜎𝜎𝑓𝑓𝑖𝑖

𝑁𝑁𝑣𝑣
𝑖𝑖=1 �∑ �𝐹𝐹𝑖𝑖,𝑡𝑡−𝑗𝑗 − 𝐴𝐴𝑖𝑖,𝑡𝑡+𝑗𝑗�

2𝑡̃𝑡
𝑗𝑗=−𝑡̃𝑡  (4-3) 

where Ft is the current forecast for the lead time t at a certain location; 𝐴𝐴𝑡𝑡 is an analog forecast for 
the same lead time and location as 𝐹𝐹𝑡𝑡; 𝑁𝑁𝑣𝑣 and 𝑤𝑤𝑖𝑖 are the number of physical variables and their 
weights, respectively, where i is a generic index referring to different variables; 𝜎𝜎𝑓𝑓𝑖𝑖 is the standard 
deviation of the time series of the past forecasts of a given variable at the same location; 𝑡̃𝑡 is an 
integer equal to the half-width of the time window over which the metric is computed (e.g., if 𝑡̃𝑡 =
1 hour, the distance will be computed over the three forecast lead times corresponding to hours t–
1, t, and t+1); and finally, 𝐴𝐴𝑖𝑖,𝑡𝑡+𝑗𝑗 and 𝐹𝐹𝑖𝑖,𝑡𝑡+𝑗𝑗 are the values of the analog and the forecast in the time 
window for a given variable. The goal is to find past forecasts of the meteorological variables 
(chosen among the ones with the highest correlation with the quantity to be predicted — solar 
power) that were predicting similar values and temporal trend (i.e., which have a similar behaviour 
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as a function of time along the time interval defined by 𝑡̃𝑡) compared to the current forecast. The 
predictors commonly used for solar power forecasts are GHI, cloud cover (CC), air temperature at 
2 m above the ground (T2M), and solar power forecasts (if available from other post-processing 
systems). 

The assumption is that if similar past forecasts are found, their errors will likely be similar to the 
errors of the current forecast, which can be inferred from theirs. The main steps of the algorithm 
can be summarized as follows: 

1. Retrieve a historical dataset of predictions (initialized at a given time) issued by a 
deterministic system (a meteorological model in this case) for the solar farm location. 

2. Retrieve an historical dataset of solar power observations at the locations of interest.  

3. Choose the physical variables from the meteorological model to be used as predictors in 
Eq. 1 for the predictand variable (solar power in this application). 

4. For each lead time of the current forecast, compute the distance (i.e., Eq. 4.3) from every 
past forecast issued at the same lead time. 

5. For each lead time of the current forecast, rank all the past forecasts and select the n 
forecasts with the lowest distance. 

6. The concurrent n past measurements are the n members that constitute the current AnEn 
forecast for the lead time considered (usually 15-20 past observations are used). 

The AnEn attempts to capture error dependent on a particular process of the atmospheric flow by 
assigning the observed errors from similar past situations, as described by the high-resolution 
deterministic model, to the current model forecast. The AnEn has potential advantages and 
disadvantages as compared to an NWP ensemble. One advantage of the AnEn is the significantly 
lower real-time computational expense of generating an ensemble, as AnEn only requires a single 
model forecast, as opposed to the multiple model runs of an NWP-based ensemble. Another 
advantage is that the forecast uncertainty is based solely upon past observations, thereby 
eliminating the need to simulate all sources of NWP forecast uncertainty via sophisticated and 
computationally intensive techniques, and, as will be shown, also avoiding the need for post-
processing calibration. One disadvantage is the need for a “frozen” meteorological model in the 
training data set. Indeed, significant changes in the NWP forecast configuration may prevent the 
generation of skilful analogs.  

4.6.2 Review of Prior Art and Improvements Made 

The analog ensemble technique (AnEn) has been originally proposed by Delle Monache et al. 
(2011, 2013) for deterministic and probabilistic meteorological forecasting, by Alessandrini et al. 
(2015a) and Junk et al. (2015a,b) for wind power forecasts, and by Vanvyve et al. (2015) for wind 
resource assessment applications, and by Alessandrini et al. (2015b) for solar power forecasts. 

AnEn has improved upon a probabilistic power forecast system based on the quantile regression 
(QR) method (Bremnes 2006; Nielsen et al. 2006). 
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Considering a random variable Y, Q(τ) is defined as the value for which the probability of obtaining 
values of Y below Q(τ) is τ. In QR, Q(τ), with 0 < τ < 1, is expressed as a linear combination of 
known regressors and unknown coefficients, exactly as the mean of the random variable Y is 
modelled in (multiple) linear regression. Thus the τ-quantile is modelled as: 

𝑄𝑄(𝜏𝜏) = 𝛽𝛽0(𝜏𝜏) + 𝛽𝛽1(𝜏𝜏)𝑥𝑥1 + ⋯+ 𝛽𝛽𝑝𝑝(𝜏𝜏)𝑥𝑥𝑝𝑝 (4-4) 

where xp are the p known regressors, also called explanatory variables, and 𝛽𝛽𝑝𝑝  are unknown 
coefficients, depending on τ, to be determined from N observations.  

The sample 𝛽𝛽𝑝𝑝 coefficients for the τ quantile can be found by minimizing the cost function: 

∑ 𝑤𝑤𝑖𝑖 ∙ 𝜌𝜌𝜏𝜏�𝑦𝑦𝑖𝑖 − �𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖,1+. . . +𝛽𝛽𝑝𝑝𝑥𝑥𝑖𝑖,𝑝𝑝��𝑁𝑁
𝑖𝑖=1  (4-5) 

where  wi is a vector of weights (between 0 and 1) given at the observations yi of the random 
variable Y, and  𝜌𝜌𝜏𝜏 is the check function defined as: 

𝝆𝝆𝝉𝝉(𝒆𝒆) = �𝝉𝝉𝝉𝝉,                     𝒆𝒆 > 𝟎𝟎 
(𝝉𝝉 − 𝟏𝟏)𝒆𝒆,        𝒆𝒆 ≤ 𝟎𝟎  (4-6) 

The coefficients 𝛽𝛽𝑝𝑝  can be estimated with linear programming techniques. In this case, as in 
Nielsen et al. (2006), the R add-on package quantreg has been used.  

The AnEn has improved also upon a persistence ensemble (PeEn) forecast (see below). The PeEn 
ensemble for each of the 72 hours ahead is made of the most recent available 20 measured PV 
values at the same hour. This set of values can eventually be ranked to define a set of power 
quantile intervals. The PeEn ensemble forecast can be accurate if clear sky conditions persist for 
several consecutive days. Indeed, at the same hour of the day similar levels of power are expected 
as the sun position is quite similar. 

Moreover, AnEn has improved predictions when compared to a forecasting system based on a 
neural network (NN). This NN system was an artificial, feed-forward NN with a single hidden 
layer. The NN has a simple structure that connects input variables with a response variable, passing 
by one hidden layer of neurons, which processes the information. 

4.6.3 Initial Validation of Solar Forecasting with AnEn 

Much of the material in this subsection is derived from Alessandrini et al. (2015b). 

Because the AnEn requires a long training period, it was implemented in the Sun4Cast®  system 
toward the end of the project. Chapter 5 includes an evaluation of its performance on multiple solar 
plants. To research and develop the AnEn used here, the performance of AnEn was compared with 
QR and PeEn at three solar PV farms in Italy with a one-year dataset of measurements by 
evaluating important attributes of probabilistic predictions, including resolution, reliability, 
spread-skill and statistical consistency. In terms of deterministic forecasting, the performance of 
AnEn and QR were also compared with those obtainable by applying a feed-forward NN to 
produce a single-valued power forecast. In fact, computing the simple mean or median of an 
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ensemble distribution allows one to obtain a single-valued deterministic forecast. Also for this 
comparison PeEn was used as a baseline reference. 

Data collected from three PV farms were considered in this study. They are located in Milano 
(northern Italy) and Catania (Sicily, southern Italy), both with a nominal power (NP) of 5.21 kW, 
and in Calabria region with a nominal power around 5 MW. The Milano PV farm is located in the 
east suburban/industrial area of Milano city. The Catania PV farm has the same set-up as that of 
Milano, in terms of type of photovoltaic panels and electronic components. It is located in the 
suburban area of Catania close to the Mount Etna volcano. Hourly averaged power data are 
available for the periods January 2010-December 2011 (Catania), July 2010-December 2011 
(Milano), and April 2011-March 2013 (Calabria).  

In order to assess the quality of the AnEn and QR systems without being limited by a specific 
threshold value, as is the case with reliability diagrams, Brier score, or relative operating 
characteristic (ROC) skill score, the continuous ranked probability score (CRPS) is computed. The 
CRPS is the equivalent of the Brier score integrated over all possible threshold values. In other 
words, it compares a full probabilistic distribution with the observations, where both are 
represented as cumulative distribution functions (CDF). The more the PDF originating the CDF is 
sharp and centered on each observation, the lower the CRPS. It is given by  

 

 
(4-7) 

where  is the CDF of the probabilistic forecast and  is the CDF of the observation 
for the ith ensemble prediction/observation pair, and N is the number of available pairs. The CRPS 
reduces to the mean absolute error (MAE) for a deterministic forecast (Hersbach 2000). A lower 
value of the CRPS indicates better performance, with 0 being a perfect score. The index is 
expressed in the same units as the forecasted variable.  

In Figure 4-14 the CRPS is plotted as a function of forecast lead time for the three solar farms and 
the three probabilistic prediction methods, normalized by both  NP (left axis) and mean measured 
power (MP, right axis). Next to the left vertical axes the CRPS (and its confidence interval) 
computed with all available lead times (considering only the hours with a positive average solar 
elevation) is shown. These average CRPS values for QR and AnEn are consistently lower than 
those of PeEn. When looking at CRPS computed independently for each lead time, in the early 
morning and late afternoon when the solar elevation is low, QR is at times worse than PeEn and 
AnEn (see for instance lead time 29 for Catania and lead time 65 for Calabria). This can be 
explained by the lower correlation between the forecasts and the observations when the solar 
elevation is low. This lower correlation affects the QR performance more than AnEn, because in 
QR the regression coefficients are computed considering all the data in the training data set, while 
in AnEn only a few cases are selected. At Milano, QR shows the lowest total average CRPS and 
also the best performance during the peak production hours. At Catania and Milano there is no 
statistically significant difference between QR and AnEn, as the total average CRPS bars overlap. 
To analyze the relative performances of the different forecast systems at the different plants, the 
CRPS can be also normalized with the MP to account for different climatic conditions (i.e., 
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different MP/NP ratio). For Catania and Calabria, QR and AnEn show an average CRPS/MP of 
about 15%, i.e., a similar level of accuracy in similar climatic conditions. At Milano, QR and AnEn 
are close to 20% and 21%, respectively, i.e., they exhibit a worse performance in a climate with 
more cloudy days, which is expected given the reduced solar power predictability.  

A quantitative assessment of the deterministic prediction quality (also referred to as spot power 
forecasts) has also been carried out. A straightforward way to obtain a deterministic prediction 
from a probabilistic one is to take, for every issued forecasted PDF, its mean or median. 

A common verification framework, as suggested for WPF by Madsen et al. (2005), should be used 
to evaluate a deterministic forecast. The mean absolute error is used to evaluate the three different 
deterministic forecasts, which can be expressed as  

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁
∑ |𝑜𝑜𝑖𝑖 − 𝑓𝑓𝑖𝑖|𝑁𝑁
𝑖𝑖=1  (4-8) 

where 𝑜𝑜𝑖𝑖  is the ith observed value and 𝑓𝑓𝑖𝑖  the ith forecasted value. MAE allows measuring the 
average error magnitude in the forecasts. As a selection criterion of forecast-observation pairs in 
Eq. (4-8) we retained only the hours with a positive average solar elevation that are relevant for 
PV forecasting. The median of every issued forecast PDF is used as the 𝑓𝑓𝑖𝑖 because it provides 
lower MAE than the mean value of the PDF (Gneiting 2011). 

In Figure 4-15 MAE values are normalized by NP (left vertical axis) and reported as a percentage 
for every lead time separately and over all the lead times together (as in Figure 4-14). The MAE 
is also normalized by MP (right vertical axis) during the test period. The AnEn and QR show a 
total MAE/NP statistically significantly lower than PeEn with values close to 6-7% for all three 
sites. The AnEn is slightly better than QR at Catania but slightly worse at Milano, while they have 
similar total MAE/NP at Calabria. The QR achieves better accuracy than AnEn at the Milano site 
for the central hours of the first two forecast days, while again QR performance degrades for early 
morning and late afternoon. NN shows slightly worse results than either AnEn and QR at Catania 
and Calabria, exhibiting higher errors during the central hours of each forecast day, while at Milano 
it performs similarly to AnEn. The different climatology of the three solar farms affects the 
performances of QR and AnEn particularly in terms of MAE/MP. In fact, at Catania and Calabria, 
MAE/MP total average values are under 20% while at Milano they are around 25%. Therefore, the 
impact of more cloudy weather and a polluted environment in terms of predictability in the 1-72 
hour range can be quantified for this data set to be 7-10% of MAE/MP. A higher impact on this 
index may occur when dealing with locations with weather more cloudy and higher power 
variability than Milano. 
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Figure 4-14. CRPS normalized by nominal power (NP, left axis) and mean measured power (MP, right axis) as a 

function of forecast lead time; 5-95% bootstrap confidence intervals are plotted for AnEn only to reduce clutter. The 
vertical bars next to the left vertical axis indicate CRPS considering all the lead times together (excluding the hours 

with a negative average solar elevation). 
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Figure 4-15. Percentage mean absolute error normalized by nominal power (MAE/NP %, left y axis) and by mean 
power (MAE/MP %, right y axis) of analog ensemble (AnEn), quantile regression (QR), neural network (NN), and 

persistence ensemble (PeEn) as function of forecast lead time. Bootstrap 5-95% confidence intervals are plotted for 
AnEn only to reduce clutter. Next to the left y-axis the metric confidence interval is computed by pulling all the lead 

times together for the hours with a positive average solar elevation. 
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4.6.4 Summary of AnEn and Application to SMUD Farms 

Probabilistic predictions can provide accurate deterministic forecasts along with a quantification 
of their uncertainty, as well as a reliable estimate of the probability to overcome a certain 
production threshold. We have applied the AnEn as a novel method for PV power forecasting over 
the 0-72-hour lead time period. 

The AnEn has been applied to generate probabilistic power forecasts made of 15 members over 
eight PV power farms located in the Sacramento Municipal Utility District (SMUD) in California.  

In this application, AnEn has used as predictors the solar power, the GHI, and the T2M forecasts 
generated by the Cubist power conversion algorithm (section 4.5) at each solar farm. The forecasts 
were issued at 3:30 AM (local time) for three days ahead with a forecast step of 15 minutes for the 
period between 18 April 2015 and 09 February 2016. The first 149 days were used as a training 
period and the remaining days for verification. A specific weight optimization for the three 
predictors has been performed, searching for the set of weights minimizing the CRPS (Eq. 4-7) 
over the training period. The analog forecasts were searched over a time window equal to one hour 
(four time steps). The weights were kept unchanged over the verification period. Figure 4-16 and 
Figure 4-17 compare the AnEn mean and Cubist in terms of BIAS and RMSE. The AnEn is able 
to consistently reduce the BIAS of about 1 MW compared to output of Cubist. The RMSE is also 
reduced by the AnEn of about 1.5 MW during the hours corresponding to the higher power 
production rates. 

 

 
Figure 4-16. Bias as a function of forecast lead time average over the eight solar farms. The mean over the 15 

members generated by the AnEn has been compared with spot forecast by Cubist. 
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Figure 4-17. RMSE as a function of forecast lead time average over the eight solar farms. The mean over the 15 
members generated by the AnEn has been compared with spot forecast by Cubist. Bootstrap 5-95% confidence 

intervals are plotted for AnEn only to reduce clutter. 

The ability of a probabilistic prediction to quantify its uncertainty can be assessed by compiling 
binned-spread/skill diagrams. In a spread/skill diagram the ensemble spread is compared to the 
RMSE of the ensemble mean over small class intervals (i.e., bins) of spread, instead of considering 
its overall average. A good correlation in the spread/skill diagram is an indication that an ensemble 
system is able to forecast its own error (Pinson et al. 2010). If the observations are indistinguishable 
from the predictions, i.e., the observations and the ensemble members are samples from the same 
distribution, it can be shown that the ensemble standard deviation (i.e., the ensemble spread) and 
the RMSE of the ensemble mean should be equal. However, if the ensemble members and 
ensemble mean errors do not have a Gaussian distribution, the spread-RMSE matching 
requirement is only a necessary condition for spread-skill consistency. The latter is satisfied if the 
two indices match at all values (i.e., the resulting trend lies on the plot’s 1:1 diagonal). Binned-
spread/skill diagrams for the AnEn system are reported in Figure 4-18. Each bin has the same 
number of data points, which results in bins of different width. An excellent correlation index 
between ensemble spread and RMSE is found.  
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Figure 4-18. Binned Spread/skill plots for the 8 solar farms for the AnEn forecasts. Both root mean square error 
(RMSE) and spread values are normalized by nominal power (NP); the 5-95% bootstrap confidence intervals are 

plotted. 

Consistency indicates whether the members of an ensemble system are statistically 
indistinguishable from the observations. If an ensemble system is statistically consistent, an 
observation ranked among the corresponding ordered ensemble members is equally likely to take 
any rank in the range of the whole PDF. A rank histogram can be used to assess whether the 
observations are equally distributed among the forecasted PDF. A perfectly uniform rank 
histogram would be flat, i.e., with uniform rank probability of 1/(𝑛𝑛 + 1) where n is the number 
of ensemble members. 

The vertical bars represent the confidence intervals and are calculated with a quantile function for 
a binomial distribution. The confidence intervals delimit the 5-95% quantile interval of the 
binomial distribution. They assess the confidence in the estimated distance from the perfect 
forecast (the one lying along the horizontal bar), which varies based on the available samples in 
each bin. In other words, with a limited number of samples a deviation from the perfect forecast 
could just occur by chance, while with an infinite number samples would reduce the confidence 
interval length to 0. The missing rate error (MRE), which is the fraction of observations lower 
(higher) than the lowest (highest) ranked prediction above or below the expected missing rate of 
1/(𝑛𝑛 + 1), is also shown. A larger positive (negative) MRE reveals a more under-dispersive (over-
dispersive) ensemble. Figure 4-19 shows the rank histograms for the AnEn over the eight solar 
farms. Only the forecast lead times when the hourly average solar elevation is greater than 0 are 
considered. The general level of statistical consistency is excellent. The AnEn is slightly over-
confident for the highest verification probability. 
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Figure 4-19. Rank histogram for Analog Ensemble (AnEn), computed over all the solar farms and all the lead times 

with a positive hourly average solar elevation. 

4.6.5 Advances Made to AnEn  

NCAR has introduced the optimization method that can be applied to define the set of weights 
(𝑤𝑤𝑖𝑖) used in Eq. 4-3. The set of optimal weights is usually defined by choosing the combination 
that minimizes the CRPS over a training period. All possible combinations defined with the 
constraint ∑ 𝑤𝑤𝑖𝑖

5
𝑖𝑖=1 = 1, where 𝑤𝑤𝑖𝑖 ∈ [0, 0.1, 0.2, … , 1], are considered.  

We also considered different time shift lengths (t̃ ) in Eq. 4-3. Specifying the length of the time 
window on which searching for the analog forecast to be greater than 1 allows for improved 
statistical consistency of the AnEn forecast, especially with short training datasets.  

Publications related to AnEn 

Journal Papers 

S Alessandrini, L Delle Monache, S Sperati, and G Cervone, Solar forecasting with an analog 
ensemble. Applied Energy 157, 95–110, 2015 

S Sperati, S Alessandrini, P Pinson, G Kariniotakis, The “Weather Intelligence for Renewable 
Energies” Benchmarking Exercise on Short-Term Forecasting of Wind and Solar Power 
Generation. Energies, 8(9), 9594-9619, 2015 

Sperati, S., Alessandrini, S., and Delle Monache, L., 2016. An application of the ECMWF 
Ensemble Prediction System for short-term solar power forecasting Solar Energy. 
Conditionally accepted, Solar Energy. 
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Davo’, F., Alessandrini, S., Sperati, S., and Delle Monache, L., 2016. A Principal component 
analysis for regional wind and solar power forecasting. Conditionally accepted. 

Conference Presentations 

Sperati, S., S. Alessandrini, L. Delle Monache, G. Cervone, L. Harding, and S.E. Haupt, 2016: 
Gridded Probabilistic Forecasts of Weather Parameters with an Analog Ensemble, 23rd 
Conference on Probability and Statistics in the Atmospheric Sciences, AMS Annual 
Meeting, New Orleans, LA, Jan. 12. 

Delle Monache, L., S. Alessandrini, G. Cervone, C. Junk, D. Rife, J. Ma, S. Sperati, S.E. Haupt, 
T. Brummet, P. Prestopnik, G. Wiener, J. Nielsen, S. Hawkins, 2015: The Analog 
Ensemble for Renewable Energy Applications: An Overview. International Conference on 
Energy and Meteorology, Boulder, CO, June 25 

S Alessandrini, Solar Forecasting with an Analog Ensemble, Solar Power International, 
Anaheim, California, United States of America, 2015. 

S Alessandrini, L Delle Monache, S Haupt, An Application of an Analog Ensemble for Short-
Term Solar Power Forecasting, AMS annual meeting, Phoenix (AZ), 2015 

S Alessandrini, The WIRE solar & wind forecasting benchmark exercise, Renewable Energies 
Forecasting - State of the art & challenges for the future "WIRE" final workshop, Paris, 
France, (2014). (invited presentation) 

4.7 THE GRIDDED ATMOSPHERIC FORECAST SYSTEM (GRAFS) 

Most of the effort in this project has focused on point forecasting because that is most relevant for 
commercial solar plants. For those, we can leverage those point forecasts to tune for the 
idiosyncrasies of the specific site and of the particular data. But for the growing deployment of 
distributed photovoltaic systems, the specific information necessary for the point forecasts and 
site-specific data is seldom available. For these applications, it is more appropriate to forecast 
irradiance on grid, tuned to available observation, even if those observations do not match the 
precise locations of the PV arrays. To that end, NCAR has leveraged some of the cost share funds 
to develop, tune, and deploy a Gridded Atmospheric Forecast System (GRAFS). Such a gridded 
system can then become the basis for regional “behind-the-meter” distributed PV power forecasts 
via upscaling (Lorenz et al. 2014; Haupt et al. 2016). Work developing, adapting, and tuning 
GRAFS was accomplished by a team of NCAR software engineers and David John Gagne, a Ph.D. 
student at the University of Oklahoma who was sponsored by NCAR to spend a year of his 
graduate studies at NCAR. Part of this work will become part of his Ph.D. dissertation. 

4.7.1 GRAFS Overview 

A gridded forecast system synthesizes numerical, statistical, and sometimes human weather 
forecasts on a regular grid and typically serves as the “last mile” of the information pipeline to the 
end user. We assessed the current systems and determined that they are not adequate for the 
purpose of developing a distributed solar power forecasting system, as reviewed below. 
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4.7.1.1 Current State-of-the-Art 

The National Digital Forecast Database (NDFD; Glahn and Ruth 2003) has been the gridded 
forecast product for the U.S. National Weather Service (NWS) since the early 2000s. Forecasters 
in each NWS Weather Forecast Office (WFO) have been free to choose any arbitrary blend of 
NWP model forecast(s) as an initial gridded state, which would then be modified by hand by the 
forecaster before submission to the NDFD. When neighboring WFOs use different initial model 
blends for their grids, discontinuities at WFO boundaries frequently are readily apparent in the 
NDFD (Craven et al. 2013). To remedy this shortcoming in the NDFD, NWS is currently 
developing and recently implemented version one of the National Blend of Models, which 
specifies a calibrated, common blend of deterministic and ensemble forecast model output to 
initialize grids for all WFOs nationwide, using statistical learning and post-processing techniques 
(Gilbert et al. 2015, 2016). 

For several years the Australian Bureau of Meteorology (BoM) and Bureau National Operations 
Centre (BNOC) has been using a sophisticated gridded operational consensus forecast (OCF) 
system (Engel and Ebert 2012; BNOC 2014). In the BoM gridded OCF, information from several 
component forecast models from international operational centers are blended through 
interpolation to a common coarse grid, model-dependent bias correction and weighted averaging 
on the coarse grid by comparing 15 days of historical forecasts against an analysis product, and 
statistical downscaling. This process yields a high-resolution, hourly, deterministic gridded 
forecast product over Australia, for several surface and upper-air quantities. The 2-m T and 2-m 
Td fields also use an “intelligent grid point selection” method near coastlines, which interpolates 
land points to land points and water points to water points, to preserve realistic land-sea 
temperature and dewpoint gradients (BNOC 2014). Furthermore, several of the surface variables 
are on an irregular network of grid points, with higher densities of grid points near coastlines and 
complex terrain, where sharper gradients are more likely, and near observation locations, which 
are generally located near population centers. 

4.7.1.2 Vision for GRAFS 

Against the background of the aforementioned consensus forecasting systems currently in 
existence and in development, we saw a need to develop an open-source gridded consensus 
forecasting system that is capable of using several statistical learning algorithms for blending 
component forecast modules into a single product. Our initial application of GRAFS is to global 
horizontal irradiance (GHI) forecasts because it is highly correlated with solar power generation, 
making this product useful to electrical utilities in balancing solar energy generation with the rest 
of their energy portfolio and demand on the grid. We label this version of the product GRAFS-
Solar. 

Our vision for GRAFS is to produce a gridded forecast product that blends information from 
multiple numerical models with smart artificial intelligence techniques, tuning to observations. 
This product will be modular and customizable, allowing a variety of input data and model sources, 
blending and optimization algorithms, and output formats. Once developed, this product will be 
widely accessible and applicable to the broader research community as open source software. 
When needed for implementation with proprietary data, however, GRAFS can be highly 
customizable and will leverage existing blending technology, including DICast®. 
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4.7.2 General Structure of GRAFS  

Figure 4-20 depicts the general framework of GRAFS-Solar. NWP models serve as the basis for 
the gridded product. One can use a single model, tuned to observations, or blend a host of models, 
such as described above for DICast® above. The base model (initially the North American Model 
– NAM) is downscaled to a standard grid spacing, with 4-km spacing provided as an example for 
the plots below. Each model that is input has its own interpretation of averaging time and valid 
time of the hourly averages of the downward shortwave radiation. Thus, it is imperative to use 
smart interpolation to make consistent hourly averages.  

Observations are also ingested for as many sources as possible, standard MADIS or SURFRAD 
sites, or from specialized networks like state mesonets, or from specific sites where solar forecasts 
are desired (such as utility sites). Those observations are also interpolated to the grid and used to 
compute the difference from the raw forecast. Finally, the interpolated differences are added back 
to the initial grid forecast at each grid point. The tuned forecast impacts beyond a single grid point 
and is spread to neighboring points via a natural neighbor approach. 

 
Figure 4-20. General framework of GRAFS-Solar. 

Figure 4-21 shows the process of using artificial intelligence or machine learning (ML) to correct 
the initial forecast. One can derive multiple variables for the model output and correlate the 
metadata about the location, time, solar position, etc. This becomes the merged training data that 
is used for training the ML model. Those trained models together with the merged data are used 
to predict corrections at the observation sites. The corrections are applied and spread to the 
neighboring grid points. A variety of methods have been applied to produce those corrections, 
including the Cubist regression tree model that is also used in the power conversion model 
described above, random forests, gradient boosted regression trees, and multilinear regression. 
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Figure 4-21. Correcting the gridded forecast with machine learning methods. 

4.7.3 Exampled of Initial Results with GRAFS 

The output of GRAFS can be viewed as time series at a point or as two-dimensional plots of the 
gridded forecast variables. These views will be expanded in the future. In addition to solar 
irradiance (GHI), one can also tune and plot temperature, wind speed, and relative humidity fields. 

Figure 4-22 displays a line plot of GHI at a particular site in the SMUD network over a 72-h mostly 
clear period. A gridded plot of GHI appears as Figure 4-23. In that plot, who can discern the 
blockage of GHI by the clouds due to passing synoptic systems. 
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Figure 4-22. Time series plot of GRAFS GHI output at a SMUD site. The tuned forecast (green lines) match well the 

observations (dark black lines). 

 
Figure 4-23. Plot of GHI over CONUS valid for 20 Feb 2015 at 1600 UTC. 
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The value of ML corrections are displayed in Figure 4-24. In that plot the mean absolute error of 
the raw forecast that was interpolated to 4 km based on the NAM is shown as the blue curve. Two 
ML techniques are compared, random forest and gradient boosted regression trees. The large 
improvement by using the ML techniques accounts for up to 60% improvement over the error of 
the raw forecast. 

 
Figure 4-24 Mean absolute error at each forecast hour of the raw NAM forecast compared to that of two ML 

methods. 

The value of GRAFS as a research tool to compare the different ML methods is expanded in Figure 
4-25. In this case, we wish to discern the value of training to each site individually (MAES plotted 
on the ordinate) as compared to merging data from multiple sites (MAEs on the abscissa). The 
resulting scatter plots compare results for forecasts from the raw Global Forecast System (GFS) 
model forecast with those from applying linear regression, random forests, and gradient boosted 
regression trees. The errors for the raw GFS are large and there is no discernable difference 
between whether the observation points are merged or not. All three tuning methods reduce the 
MAE of both the single and merged sites. The MAEs of the random forecast are quite reduced and 
the differences between the single and merged models are small. Errors for the linear regression 
forecasts exceed those of the random forest forecasts and errors may be a bit higher for the merged 
site models. The forecast errors using the gradient boosting method are the smallest, but there is a 
distinguishable higher error when tuned for single sites than when they are merged. This 
observation indicates that gradient boosting may be an efficient technique for tuning the forecasts, 
but it works best with a larger amount of observational data than may be available if tuned to each 
site individually. This example shows how GRAFS can be used for research into the usefulness of 
different AI techniques for tuning forecasts. 
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Figure 4-25 Comparison of three ML tuning techniques to the raw GFS forecasts via scatter plots of MAE as 

computed for a single site model vs. a model built from data merged from multiple sites. 

4.7.4 Scientific Output related to GRAFS 

Students Sponsored by this work:   

David John Gagne, Ph.D., Atmospheric Science, University of Oklahoma, expected August 
2016. Dissertation: “Coupling Data Analytics Techniques and Numerical Weather 
Prediction Models for High-impact Weather Prediction.” 

Journal Papers based on GRAFS: 

Several expected within 6 months of publishing this report. 

Conference Presentations Based on GRAFS: 

Gagne, D.J., S.E. Haupt, S. Linden, and G. Wiener, 2016: An Evaluation of Statistical Learning 
Methods for Gridded Solar Irradiance Forecasting, Joint Session between 14th Conference 
on Artificial and Computational Intelligence and its Applications to the Environmental 
Sciences and Seventh Conference on Weather, Climate, Water, and the New Energy 
Economy, AMS Annual Meeting, New Orleans, LA, Jan. 12. 
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Gagne, D.J., S.E. Haupt, S. Linden, G. Wiener, 2015:  A Community Gridded Atmospheric 
Forecast System for Calibrated Solar Irradiance. International Conference on Energy and 
Meteorology, Boulder, CO, June 24. 

Linden, S., D.J. Gagne, and S.E. Haupt, 2015:  Initial Implementation of the Solar Gridded 
Atmospheric Forecast System (GRAFS-Solar), NCAR retreat, Dec. 8. 

Gagne, D.J., S.E. Haupt, S. Linden, J.K. Williams, A. McGovern, G. Wiener, J.A. Lee, and T.C. 
McCandless, 2015:  Scaling Machine Learning Models to Produce High Resolution 
Gridded Solar Power Forecasts, 13th Conference on Artificial Intelligence, AMS Annual 
Meeting, Phoenix, AZ, Jan. 7. 
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5 ASSESSMENT 

5.1 SUMMARY OF ADVANCEMENTS 

The primary advancements that have been achieved in this public-private-academic partnership 
have come in the development and improvement of several forecast models. Each of the 
component models in the Sun4Cast®  system, which were described in detail in chapters 2 and 3, 
represents a step forward in solar energy forecasting, both in the nowcasting and day-ahead time 
frames. 

TSICast (section 2.1) is a short-term solar forecast system utilizing ground-based sky cameras. 
The system adopts multi-angle observations to undertake the task of cloud tracking based on 
spatial and temporal correlation, and provides a pipeline to detect multi-layer motions via 
clustering. The robust feature extraction and irradiance models are then vetted for real production 
forecasts. Compared with single-camera models, TSICast significantly enlarges the field of view, 
enables 3-D cloud tracking, and obtains more accurate forecasts. As is shown in Figure 2-20, 
TSICast improves on persistence GHI forecasts by an average of 25-30% in the 5-15 minute range, 
and by 30-40% in the 1-5 minute range, in testing performed for the network of 25 pyranometers 
at BNL. 

StatCast (section 2.2), which has several versions that were built for this project, uses machine 
learning techniques to predict GHI out to 3 h, based on the most recent hour of GHI observations, 
nearby METAR observations, and a training dataset. StatCast-Persistence is a “smart persistence” 
technique that predicts persistence in clearness index, automatically adjusting for the continuously 
changing solar zenith and azimuth angles in providing GHI forecasts. StatCast-Persistence is the 
baseline against which all the short-range models are evaluated later in this chapter, in section 5.2. 
StatCast-Cubist uses the Cubist model tree to define a set of rules using the training dataset, which 
are then applied to yield a GHI forecast at each lead time. Compared to StatCast-Persistence, 
StatCast-Cubist yielded improvements of generally 35-50% at all lead times on clear days, and 10-
50% on cloudy days, with improvements getting larger with increasing lead time (Figure 2-37). 
StatCast-RD (regime-dependent) breaks up the sky condition into different cloud regimes using k-
means clustering, and trains a separate artificial neural network (ANN) for each regime. As Figure 
2-39 shows for cloudy days over the SMUD pyranometers, various versions of StatCast-RD 
frequently improve upon StatCast-Persistence by generally 15-25% for lead times of 1 to 3 hours, 
with the best performance in the version that incorporates cloud data from the GOES-East satellite. 

CIRACast (section 2.3) is a model that identifies cloud features in visible satellite imagery, and 
then advects those cloud features in a NWP wind field. Much of CIRACast was developed prior 
to this project, but several advances to CIRACast were made during this project, including 
accounting for satellite viewing parallax in GOES cloud height retrievals, improved cloud 
shadowing algorithms, and accounting for differential steering effects. As seen in Figure 2-41 and 
Figure 2-42, relative MAE values of GHI forecasts computed for two SURFRAD sites were 9.6% 
for Desert Rock, NV (beating the project target error rate of 10% for “simple” sites), and 21.8% 
for Table Mountain, CO (nearly achieving the project target error rate of 20% for “complex” sites). 
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MADCast (section 2.4) is a model that identifies cloud features from IR satellite imagery, and then 
advects and diffuses those cloud features as tracers in a stripped-down version of WRF that does 
not have physical parameterization schemes, in order to achieve faster performance. MADCast 
was developed prior to this project, but enhanced and configured for this project to produce GHI 
forecasts out to 6 h. Compared to a purely NWP solution (WRF-Solar-Now, discussed next), 
MADCast has generally 5-20% lower errors over the first 1.5 hours of the forecast (Figure 2-44). 
The MADCast analysis is generally a good one, although errors steadily increase with time due to 
the lack of physics schemes to develop and dissipate clouds. 

WRF-Solar-Nowcasting (section 2.5) is a version of the WRF-Solar™ NWP model (chapter 3; 
summarized below) configured for nowcasting (0-6 h) purposes. Among the developments for 
WRF-Solar-Nowcasting was the implementation of cloud-radiation feedbacks in the model, and 
improved representation of unresolved clouds. Incorporating these feedbacks is shown in Fig. 
Figure 2-46 to reduce GHI bias errors (across all SURFRAD and ISIS sites) by as much as 50-
70% over forecasts without these feedbacks, especially for lead times in the 3-6 hour range. 

MAD-WRF (section 2.6) is a coupled model that was developed late in the project as it became 
obvious that combining the advantages of WRF-Solar-Nowcasting with MADCast satellite-based 
cloud assimilation could be beneficial. As Figure 2-44 shows, MADCast has lower errors than 
WRF-Solar™ in the first 1.5 hours, after which point WRF-Solar™ has the lower errors. 
Consequently, MAD-WRF has been configured to use MADCast cloud fractions and cloud mixing 
ratios for 0-1 h, WRF-Solar™ cloud fractions and mixing ratios for 1.5-6 h, and an average blend 
of the two for 1-1.5 h. 

Several case studies of the nowcasting models (section 2.7) were conducted for different sky cover 
regimes around Sacramento, California. These case studies found that each of the components 
(StatCast-Cubist, CIRACast, MADCast, and WRF-Solar™) had their strengths in various regimes, 
times of day, and lead times, further illustrating the need to have this wide array of forecast models 
in a single system like Sun4Cast® . 

The WRF-Solar™ model, which is used to make day-ahead GHI forecasts, was highlighted in-
depth in chapter 3. The primary enhancements that set WRF-Solar™ apart from the standard WRF 
NWP model include improved representation of the aerosol-radiation feedback, incorporation of 
cloud-aerosol interactions, and improved representation of cloud-radiation feedbacks, in addition 
to improving the handling of the solar position/equation of time calculation and making all three 
irradiance components (GHI, DNI, DIF) available for output every model time step as desired. 
These improvements have led to greatly reduced errors in GHI predictions. Figure 3-8 highlights 
this well for all the SURFRAD sites, where, for clear skies, errors in GHI predictions from WRF-
Solar™ improved upon standard WRF by a remarkable 40-60%. 

5.2 SYSTEMATIC EVALUATION  

At the beginning of this project, the Department of Energy (DOE), the National Oceanic and 
Atmospheric Administration (NOAA), the National Center for Atmospheric Research (NCAR), 
National Renewable Energies Laboratory (NREL), Argonne National Laboratory, and IBM 
worked together on developing metrics to assess the quality of tools for solar irradiance and solar 
power production forecasting. These metrics were determined through feedback gathered from 
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stakeholders during several workshops and discussions over the first 14 months of the project 
(Budget Period 1 – BP1). An NCAR technical note has been developed to allow interested users 
access to the team’s findings (Jensen et al. 2016). It contains additional background on this effort 
and the workshops as well as summarizes feedback from stakeholders. The technical note covers 
only metrics that pertain to the quality of the solar forecasting tool (statistical metrics) and its 
economic impacts and user benefits (economic metrics). Customized metrics that evaluate specific 
components of the solar forecasting tool and other processes, such as successful user integration 
of solar forecasting into grid operations, are not included in this report. 

This section focuses on the quality of the Sun4Cast®  forecast system. The economic impacts are 
covered in section 5.3. Table 5-1 summarizes the metrics identified in the first budget period. It 
includes a set of six base metrics that were proposed to meet the needs of multiple users. Four of 
these metrics—Mean Absolute Error, Root Mean Square Error, Distribution of Forecast Errors, 
and Categorical Statistics—provide statistical insights to the performance of forecasts in order to 
aid the comparison of different forecast models or to validate a single forecast model output against 
actual values. The two remaining base metrics—Operating Reserves Analysis and Production 
Cost—translate forecast performance to economic value that will provide insight into the benefits 
realized with improved accuracy of forecasts. Additionally, enhanced metrics are also proposed to 
provide more detailed insights into forecast performance under various scenarios. Each proposed 
metric is defined in that technical note with emphasis on the insight provided by the metric, its 
calculation process, and its application as illustrated with an example of a use case.  

The verification system was developed during the second year of the project and augmented in 
third year to include sky condition information and ramp identification and scoring. The system 
uses the Model Evaluation Tools (MET) Statistical-Analysis tool to compute the verification 
measures and the METViewer database and display system to aggregate the results. Table 5-2 
summarizes the dates of forecast availability and summarizes the metrics calculated for the 
milestones associated with this subtask. Because the partners in the project are located in a range 
of locations – the eastern (BNL), central (Xcel), and western US (SMUD and SCE) – the results 
represent extensive geographical diversity. The evaluation period extends from January 1, 2015 to 
March 20, 2016. Many of the milestones were based on improvements from the beginning of 2015 
to the beginning of 2016. The 2015 data extended from January to May 2015. Thus, the dates for 
2015 and 2016 do not completely overlap; hence, for milestone performance comparisons the 
period January – March 2015 was used for 2015 and January – March 2016 was used for 2016. 
However, results for the intervening months is also provided for completeness. It should be noted 
that TSICast provides a forecast out to 14 minutes and hence is not included in the full Sun4Cast®  
system. For this reason, the performance of TSICast was evaluated using a separate system and 
these results are also included in this document. 
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Table 5-1. Matrix of Solar Metrics developed during BP1 and broken down into Base and Enhanced Comparison 
and Economic Value. 

 Model-Model Comparison Economic Value 
B

as
e 

Mean Absolute Error  

Root Mean Square Error  

Distribution (including Statistical Moments and 
Quantiles)  

Categorical Statistics for Events 

Operating Reserves 
Analysis  

Production Cost  

E
nh

an
ce

d 

Maximum Absolute Error  

Pearson's Correlation Coefficient  

Kolmogorov-Smirnov Integral  

Statistical Tests for Mean and Variance  

Renyi Entropy 

OVER Metric  

Brier Score 

Receiver Operating Characteristic (ROC) Curve  

Calibration Diagram  

Probability Interval Evaluation  

Frequency of Superior Performance  

Performance Diagram for Events  

Taylor Diagram for Errors 

Cost of Ramp Forecasting 
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Table 5-2. Month when forecast component became available for assessment.  

Component SMUD SoCal Edison BNL Xcel 

StatCast Apr2014 Jul2014 Jul2014 Apr2015 

TSICast Jan 2015 Jan 2015 Jan 2015 Jan 2015 

CIRACast Jun2014 Jul2014 Jul2014 Jan2015 

MADCast Oct2014 Oct2014 Oct2014 Jan2015 

WRFSolar Sep2014 Sep2014 Sep2014 Jan2015 

WRFSolarNow Sep2014 Sep2014 Sep2014 Jan2015 

MAD-WRF blend Aug2015* Aug2015* Aug2015* Aug2015* 

Power Conversion Apr2014 Jul2014 Jul2014 Apr2015 

AnEn (GHI) Jun2014 Jul2014 Jul2014 Oct2015 

NowCast Apr2014 Jul2014 Jul2014 Apr2015 

DICast Apr2014 Jul2014 Jul2014 Apr2015 

NOTE: *Available for 14 and 16 UTC initialization times only. 

Several baselines are available for this evaluation, including persistence with knowledge of sky 
condition for NowCast components (Smart Persistence, as described in section 2.2.5.1) and 
publicly available numerical weather prediction (NWP) models for both the NowCast and 
DICast® components. Table 5-3 provides details describing the baselines. 

As shown in Table 5-3, the publicly available NWP baselines that were evaluated included the 
North American Mesoscale model (NAM), the Global Forecast System (GFS), the Global 
Environment Multiscale Model (GEM), and the High Resolution Rapid Refresh (HRRR). The 
HRRR is run at two locations: NOAA’s National Centers for Environmental Predication (NCEP) 
and NOAA’s Earth System Research Laboratory’s Global Systems Division (GSD). The HRRR 
run at NCEP is the publicly available operational model and is based on WRFv3.5.1 (similar to 
WRF-std baseline). The HRRR run at GSD is the development version in preparation for transition 
to operations in the next few months and includes many of the advancements in the WRF-Solar™ 
package as well as other developments.  
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Table 5-3. Characteristics of baselines for metrics evaluation. 

Baseline Abbrev-
iation 

Comparison 
with: 

Fcst 
available 

Comments 

Smart 
Persistence 
based on initial 
StatCast 

SmartP NowCast 0-6 hr with 
15 min 
increment 

Requires past irradiance obs; 
when not available, constant 
clearness index of 0.6 used in lieu 
of obs. See NowCast section for 
complete description. 

Standard 
Version of WRF 

WRF-std NowCast 
and DICast 

0-48 hr WRF version 3.5.1 with WRF 
solar development removed 

Power Obs Obs Power 
Conversion 

0-72 hr Observations from partner 
locations 

Publicly 
available NWP 

NAM NowCast 
and DICast 

0-72 hr Available via NOAA/NCEP 

12 km -– hourly 

GFS DICast 0-72 hr Available via NOAA/NCEP 

0.25 deg (~30 km) – 3 hourly 

GEM DICast 0-72 hr Available via Environment 
Canada – 25km – 3 hourly 

HRRRops NowCast 0-15hr Available via NOAA/NCEP –  

3 km -– hourly 

HRRRx NowCast 0-15hr Available via NOAA/GSD – 
includes WRF-Solar™ 
improvements – 3 km - hourly 

 

Figure 5-1 provides a picture of the seasonal performance for partly cloudy conditions aggregated 
over three partners, BNL in New York, Xcel in Colorado and SMUD in California. Smart 
Persistence MAE tends to be lowest during late summer and fall, moderately high in spring and 
early summer with the highest MAEs reported during the winter. MAE values appear to be slightly 
higher for the 2015-2016 winter, which is likely caused by increase cloudiness due to El Niño 
conditions.  The components of NowCast follow a slightly different trend with low MAE scores 
during winter 2014-2015 and a peak similar to Smart-Persistance during spring and early summer 
2015. The components have varied responses during the transition to the 2015-2016 winter.  WRF-
Solar-Now appears to have the most consistent performance amongst the components. 
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Figure 5-1. Median MAE in W m-2 for SMUD stratified by month. 

5.2.1 NowCast System and Components 

One purpose of exploring multiple nowcast components is that each one is potentially skillful for 
a different forecast horizon (lead time) and sky condition. Understanding the strengths and 
weaknesses of each system can lead to development of an expertly blended system. Components 
of the system include observation-only forecasts such as TSICast, for forecast on the scale of 
minutes and StatCast and CIRACast, with 15-min forecasts out to 3 h during daylight hours; and 
NWP-driven components like MADCast, WRF-Solar-Now with 15-min forecasts out to 6 hours. 
All components are used by the NowCast blending algorithm to develop a statistical forecast. 
Additionally, the DICast® forecasts derived from the operational NWP was interpolated to 15-
min intervals and made available for this analysis (called DICast-Now). The baseline for the 
NowCast system comparisons is the StatCast Smart Persistence technique developed toward the 
beginning of the project. It was extended from 3 hours to 6 hours to allow for a complete 
comparison. This section will discuss the evaluation of each of these components in the temporal 
resolution order established in this paragraph. 

TSICast provides 1-min forecasts out to 12-15 minutes depending on the weather conditions. The 
MAE values for TSICast provided in Table 5-4 indicate the largest errors are for the 14-min 
forecasts, with an MAE of 64.1 W m-2. The forecasts were evaluated using the verification library 
within the R statistics package. The bias, RMSE, skewness and kurtosis listed in Table 5-4 
represent the first, second, third, and fourth moments of the error distribution.   
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Table 5-4. Scores for TSICast error distribution including, bias (or mean error), mean absolute error, root mean 
square error, inner quartile range, maximum value, minimum value, and skewness. Units for all scores are W m-2. 

Lead 
Min. Bias MAE RMSE IQR Max Min Skewness Kurtosis 

0 -7.4 35.8 94.3 10.38 1042.8 -1636.4 -0.41 27.4 

2 -6.6 43.0 104.2 18.4 1064.6 -2170 -0.23 22.6 

4 -6.1 48.4 111.0 26.8 1073.5 -1639.68 -0.14 19.2 

6 -7.7 52.6 116.0 34.3 1105.5 -2192 -0.25 17.8 

8 -8.9 57.2 121.1 41.4 1113.5 -1662.97 -0.18 15.7 

10 -9.3 60.8 125.2 48.3 1147.7 -1636.4 -0.21 14.5 

12 -9.0 63.0 126.7 54 1132.8 -2170 -0.20 14.1 

14 -8.8 64.1 124.8 61.2 1134.9 -1639.68 -0.28 13.8 

 

From the Metrics Technical Report (Jensen 2016), a positive skewness of the forecast errors leads 
to an over-forecasting tail while a negative skewness leads to an under-forecasting tail. All values 
of skewness for TSI are negative and hence suggest an under-forecasting bias, which is supported 
by the bias (or mean bias error – MBE) shown in the 2nd column of Table 5-4. Positive kurtosis 
indicates a narrow distribution; while a negative kurtosis value indicates a flat wide distribution. 
All kurtosis values are positive in Table 5-4, suggesting that the error distribution is narrow. The 
inner quartile range (IQR) represents the distance between the 25th and 75th percentile of the 
distribution and generally represents the range of the most likely scores. The IQR increases with 
time from 10 to 60 W m-2 indicating a rapidly expanding error distribution within 14 minutes. The 
MAE of the TSI forecasts at 14 minutes is 64.1 W m-2. Similarly, the MAE at 15 minutes from the 
NowCast system for Smart Persistence was 97.3 W m-2. Using this value as the baseline, the 
percent improvement of TSICast over Smart Persistence is 34%. 

5.2.2 Blended NowCast System 

Observationally-based methods like StatCast and CIRACast are expected to perform best in the 0-
3 h time window. These methodologies are also expected to perform best when the conditions are 
relatively constant (e.g. clear or cloudy conditions). Like all statistical methods, the skill of the 
forecasts is also driven by the amount of data upon which to train the method. NWP-based methods 
like MADCast, MAD-WRF, and WRF-Solar-Now extend out to 6 hours. These methodologies 
may add skill to variable cloud conditions but may also be subject to double penalty errors due to 
displacement of clouds within the simulation. The skill of the forecasts is driven by the initial 
conditions and physics parameterizations of the method.  Weights were assigned by initial skill of 
the component for use in the NowCast blended system.  It was intended these weights would be 
adjusted as the project continued and the components improved but time did not allow for this 
optimization.  
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The partners where solar penetration is the largest, for example the California utilities SMUD and 
SCE, provided data earlier than others. Figure 5-2 through Figure 5-4 show component 
performance stratified by partner.  Scores for BNL (blue), Xcel (orange) and SMUD (green) are 
included.  SCE provided observations in plane-of-array rather than GHI and thus did not have 
forecasts from many of the components.  

In Figure 5-2 it is clear that most scores for each partner tend to cluster.  The baseline, StatCast-
Smart-Persistence, has large errors with MAE values ranging from 100-250 W m-2.  The forecasts 
for BNL appear to have the least error throughout the 15-month period.  StatCast-Cubist was 
trained late in the project and forecasts were produced retrospectively for all SMUD sites but only 
one site at BNL and Xcel retrospectively.  At SMUD, StatCast-Cubist MAE values are 
approximately 50% lower than Smart-Persistence during the winter months. 

Figure 5-3 indicate that the forecasts for CIRACast and MADCast at BNL and Xcel locations are 
much higher than SMUD at the beginning of the 15 month evaluation period (data for training 
models was available later in the project than for SMUD) but equilibrate with it during winter 
2016. While CIRACast forecasts were provided for Xcel locations, their time-stamp precluded the 
forecasts from being included in this evaluation.  A similar pattern is depicted in Figure 5-4 MAE 
at SMUD (green) tends to remain between 50 and 100 W m-2 throughout 2015 and into 2016, while 
at BNL it started between 100-150 W m-2 and dropped to similar scores as SMUD after August 
2015. Similarly, scores at Xcel started between 150-200 W m-2 and also dropped to similar lower 
values in late summer.  
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Figure 5-2. MAE in W m-2 of Smart Persistence (top) and StatCast-Cubist (bottom) stratified by location. Scores for 

BNL (blue), Xcel (orange) and SMUD (green) are included. Scores are aggregated over all sky conditions. 
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Figure 5-3. MAE in W m-2 of CiraCast (top) and MADCast (bottom) stratified by location. Scores for BNL (blue), 

Xcel (orange) and SMUD (green) are included. Scores are aggregated over all sky conditions. 
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Figure 5-4. MAE in W m-2 of MAD-WRF (top), WRFSolarNow (bottom) stratified by location. Scores for BNL 

(blue), Xcel (orange) and SMUD (green) are included. 
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The resulting scores for the fully blended NowCast system, shown in Figure 5-5, follow a similar 
trend with higher scores at the Xcel location as it spun up.  The improvement in performance at 
Xcel between April 2015 and March 2016 represents a 45-48% improvement within the time-
frame of the project.  

 

 
Figure 5-5. MAE in W m-2 of blended NowCast stratified by location. Scores for BNL (blue), Xcel (orange) and 

SMUD (green) are included. 

Figure 5-6 provides a measure of each model’s skill when these scores are accumulated over all 
geographic regions for the entire 15-month evaluation period. The scores were aggregated over all 
issue times.  It also shows the skill for clear, partly cloudy and cloudy conditions. During clear 
conditions, only WRF-Solar-Now and NowCast outperform Smart Persistence to 45 minutes (0.75 
hours). After this, all methods have lower MAE than Smart Persistence, with WRF-Solar-Now 
and CIRACast performing the best out through 2 hours and WRF-Solar-Now and MAD-WRF 
through 3-6-h lead times. For partly cloudy and cloudy conditions, the performance of the 
components is much more variable, with NowCast and MADCast providing the best forecasts 
during partly cloudy conditions and StatCast-Cubist and MAD-WRF giving the better forecasts 
during cloudy conditions. It is interesting to see that the performance of StatCast-Cubist is fairly 
poor for clear conditions and quite good for cloudy.  It is possible the training dataset was biased 
with cloudy conditions therefore leading to high skill in cloudy conditions.   
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Figure 5-6. MAE in W m-2 for all NowCast components aggregated over all partners and all sky conditions (upper 

left), clear (upper right), partly cloudy (lower left) and cloudy (lower right) sky conditions.  

While the components tend to perform better than Smart Persistence when initialized in the early 
morning, runs initialized in the afternoon struggle to beat Smart Persistence. Figure 5-7 provides 
plots of MAE for all NowCast components for forecasts initialized at 14, 16, 18 and 20 UTC. Most 
components outperform Smart Persistence (black line) at the 14 and 16 UTC issue times but 
struggle to beat Smart Persistence out to 3 hours for 18 UTC and to some extent 20 UTC issue 
times. Notably, WRF-Solar™ struggles at the beginning of the 18 UTC and 20 UTC forecast 
cycles, likely due to spin up issues for periods when clouds may be present.  As expected, the 
observationally based methods such at StatCast_cubist, CIRACast and MADCast seem to perform 
the best during the first 3 hours with the NWP based methods, WRF-Solar-Now and MADCast 
outperforming Smart Persistence after 4 hours. 



The Sun4Cast Solar Power Forecasting System   

 

210 
 

 

 
Figure 5-7. MAE in W m-2 for each NowCast components aggregated over all partners and partly cloudy conditions 

for 14 UTC (upper left), 16 UTC (upper right), 18 UTC (lower left) and 20 UTC (lower right) issue times. 

To facilitate better weighting of the components, and to help determine which ones are imperative 
to the Sun4Cast®  system, the performance of each component was ranked based on lead times 
and sky conditions.  Table 5-5 and Table 5-6 provide these rankings. When all sky conditions are 
considered, WRF-Solar-Now is the top performer followed by MAD-WRF when available and 
MADCast (Table 5-5). However, for the hour ahead (HA: 0-1 hr) forecast, the best methods for 
weighting are StatCast-Cubist and CIRACast. In Table 5-6, the components are ranks based on 
performance in sky conditions in the 1-3 h time frame.  For clear skies, WRF-Solar-Now and 
MAD-WRF are the top performers, whilch MADCast and StatCast_Cubist do better in partly 
cloudy conditions.  In cloudy conditions, StatCast-Cubist and WRF-Solar-Now are the best 
components.  If all conditions are rolled together, WRF-Solar-Now and MAD-WRF contribute the 
most to the skill. 

 

 

Table 5-5.  Rank of each component for all sky conditions stratified by lead-time. 
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 Rank for the All Sky Conditions 
Component 0-1hr 1-3hr 3-6hr All 
CiraCast 2 5 n/a 5 
MADCast 5 3 4 4 
MAD-WRF 6 2 3 2 
Smart Persist 7 7 5 7 
StatCast_Cubist 1 6 n/a 6 
WRFSolarNow 3 1 1 1 
NowCast 4 4 2 3 

 

Table 5-6.  Rank of each component for the 1-3hr forecasts stratified by sky condition. 

 Rank for the 1-3hr Forecasts 
Component Clear Partly 

Cloudy 
Cloudy All 

CiraCast 3 5 7 5 
MADCast 5 1 5 3 
MAD-WRF 2 7 3 2 
Smart Persist 7 6 6 7 
StatCast_Cubist 6 3 1 6 
WRFSolarNow 1 4 2 1 
NowCast 4 2 4 4 

 

The GHI forecasts at SMUD were also analyzed for performance during variable conditions. Ramp 
events varying in magnitudes from 100 W m-2 to 350 W m-2 change in 30 minutes were identified 
within each NowCast component. Figure 5-8 shows frequency bias (number of forecasted events 
divided by the number of observed events) three of the components (CIRACast, MADCast and 
WRF-Solar-Now) and the NowCast blended forecast. Values of frequency bias greater than 1.0 
indicate an over-forecast of events and less than 1.0 an under-forecast of events. If there is no box 
for a given magnitude, it indicates that there were no ramps of that magnitude identified in the 
component. The box plots are stratified by lead time to help identify how the components perform 
with increasing lead.  

Generally, CIRACast also only predicts lower intensity ramp events but over-predicts the number. 
MADCast captures the lower intensity events early on (0-1 h) and at the end of the forecast cycle 
(3-6 h). It is also able to identify the larger ramps (>200 W m-2) in the 1-3 hour forecast window 
but under-predicts the number of events. WRF-Solar-Now has similar ability to identify ramp 
events but over-predicts the number of events out to 3 hours and then gets the number of the lower 
intensity events just about right. The NowCast system seems to do the best at identifying both low- 
and high-intensity events after 1 hour even though there tends to be an under-prediction of the 
frequency. 
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Figure 5-8. Performance of forecasts during ramp events. CIRACast (upper right), MADCast (middle left), WRF-
Solar-Now (middle right) and NowCast blended forecast (lower left). Box plots are stratified by forecast lead time 

(0-1, 1-3, 3-6 hours) and intensity of the ramp (100 W m-2 – red to 350 W m-2 purple by 50 W m-2). 

Because the evaluation period was 15 months, there is a three-month period to assess performance 
changes between years.  Table 5-7 summarizes the differences between clear, cloudy and all sky 
conditions for all components, including TSICast. Because each year is different, it is not 
surprising to see that improvements over Smart Persistence are not larger in 2016.  StatCast-Cubist 
is the only method that was not enhanced or changed during the 15-month period.  The decrease 
in scores from winter 2015 to winter 2016 support the theory that 2016 is a more challenging 
forecast year due to El Nino.  Despite this, some components either maintained their median 
improvement (WRF-Solar-Now and MADCast) or increased it (TSICast). 
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Table 5-7. Median MAE improvement in % for NowCast components versus Smart Persistence for Clear, Cloudy 
(Partly Cloudy and Cloudy) and all sky conditions at the beginning and end of the evaluation period. 

  Jan-Mar 2015 Jan-Mar 2016 

Component Clear Cldy All Clear Cldy All 

TSICast* - - 29.0 - - 34.0 

StatCast_Cubist 46.2 61.9 55.1 38.5 37.4 37.1 

CIRACast 62.1 16.5 45.9 66.0 12.8 36.3 

MADCast 60.9 40.1 48.9 58.9 43.8 50.3 

WRFSolarNow 73.7 40.7 55.9 71.4 42.4 55.6 

NowCast 65.7 43.6 53.3 54.5 38.6 45.7 

 

5.2.3 DICast® System and Components 

The DICast® blending system serves to statistically blend NWP forecast for the Sun4Cast®  solar 
forecasting system (see section 4.3). It provides the sole forecast beyond 6 h, although it also 
produces forecasts from time t=0 as also assessed in this section. As shown in Table 5-3, several 
publicly available operational forecast models were statistically blended using DICast®. 
Additionally, an instance of WRF-Solar™ was also integrated into the system. Similar to the 
evaluation for NowCast components, scores were computed for each DICast® component. Figure 
5-9 displays correlations between the forecast and observed values aggregated by month. It 
provides a similar picture of the seasonal performance that that in Figure 5-1 in the NowCast 
section above. In this case, Figure 5-9 is aggregated over all sky conditions at SMUD locations for 
the 6-12-h forecasts. Correlation is lower during the winter months and higher between March and 
November with most of the components exhibiting similar scores. Correlations were much lower 
in January and February 2016 than in 2015. Once again, this may be due to the increased 
cloudiness, which is difficult to predict precisely, as a result of El Niño. 
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Figure 5-9. Pearson’s correlation in W m-2 for DICast® components aggregated by month. 

Individual component performance as a function of issue time and measured using MAE is 
provided in Figure 5-10. The forecasts being evaluated are Day-Ahead forecasts with lead times 
between 28-39 hours. Day-Ahead decisions are made between 9-10 UTC for BNL; 10-11 UTC for 
Xcel, and 11-12 UTC for SMUD and SCE locations. Generally, the Sun4Cast®  system (orange) 
provides improved forecasting for all sky conditions and when specifically looking at partly cloudy 
and cloudy conditions. For clear conditions, WRF-Solar™, NAM and GFS outperform the blended 
Sun4Cast®  system. The poorer performance of the GEM in clear sky conditions appears to be 
influencing the Sun4Cast®  system. Considering that the real challenge in solar irradiance 
forecasting is capturing the irradiance variations due to cloudy and partly cloudy conditions, the 
marked improvement by the Sun4Cast®  System under these conditions is encouraging. Figure 
5-11 provides plots of RMSE and mean error (bias). Similar conclusions may be drawn if RMSE 
is used for evaluation, however the difference between Sun4Cast®  scores and the operational 
component scores is larger. Interestingly, despite Sun4Cast’s lower error scores, it tends to have a 
low bias by 5 to 10 W m-2 in forecasts issued after the sun comes up (shown in Figure 5-11). The 
Canadian GEM model also has a low bias, while NAM, GFS, and WRF-Solar™ all have high 
biases, on the order of 10-20 W m-2. 
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Figure 5-10. MAE in W m-2 for all Day-Ahead forecasts from DICast® components and Sun4Cast®  system at 

SMUD locations and all sky conditions (upper left), clear (upper right), partly cloudy (lower left) and cloudy (lower 
right) sky conditions.  

 
Figure 5-11. RMSE (top) and Bias (bottom) in W m-2 for each Day-Ahead forecast from DICast® components and 

Sun4Cast®  system at SMUD locations. 

Figure 5-12 indicates that when scores are aggregated over all partners, including BNL, Xcel, 
SMUD, and SCE, the Sun4Cast®  and WRF-Solar™ systems perform better than the operational 
models for Day-Ahead forecasts. The notches about the median on box plots may be used to 
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determine if these results are statistically significant. If the notches do not overlap, the results are 
considered significant. Based on the box plots presented in Figure 5-13, these results are 
statistically significant at all lead times.  

 
Figure 5-12. MAE in W m-2 for Day-Ahead forecasts from DICast® components and Sun4Cast®  system at all 

partner locations and all sky conditions. 
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Figure 5-13. Box plots of MAE in W m-2 for Day-Ahead forecasts from DICast® components and Sun4Cast®  

system at all partner locations and all sky conditions. 

Shorter lead times must be examined to compare the Sun4Cast®  system with the higher resolution 
operational and research models (HRRRops and HRRRx). Figure 5-14 provides boxplots for the 
accumulation of scores over the 6-12 hour leads (top). Both HRRRops and HRRRx appear to have 
the highest MAE values. This is not completely surprising because they are both at 3-km 
resolution. Higher resolution models tend to be penalized by displacement errors more heavily 
than the smoother, coarser models that are blended into Sun4Cast® . For these initialization times, 
a 6-12-hforecast will be valid during the late afternoon or evening hours, on the tails of the daily 
irradiance profile. Inspection of the results for issue times between 0800 and 1300 UTC are very 
similar, hence the figure is not provided. For these lead times, it appears that the best performers 
are the NAM and WRF-Solar™, with similar median values and no statistically significant 
differences. To gain a sense of how these errors compare to the actual values, box plots of MAE 
normalized by actual values are shown in the bottom plot in Figure 5-14. The skill of HRRRx 
appears to be less than that of NAM, WRF-Solar™, and Sun4Cast® . 
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Figure 5-14. Box plots of MAE in W m-2 for 6-12-hour forecasts from DICast® components and Sun4Cast®  system 

at all partner locations and all sky conditions. 
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5.2.4 Expert Sun4Cast®  System 

Much of section 5.2.3 includes a discussion of how the Sun4Cast®  system performs with respect 
to its components. Of interest is also how Sun4Cast®  performs as a blended system throughout a 
year of forecasting. Figure 5-15 provides a summary of the Sun4Cast®  intraday and Day-Ahead 
forecast performance using MAE stratified into two-month aggregates. These plots reveal an 
interesting trend that is different from those displayed for only the SMUD location in Figure 5-1 
and Figure 5-9. In general, MAE is 50% lower in winter months and 30% lower when Jan-Feb 
2015 is compared with Jan-Feb 2016 for all sky conditions.  Figure 5-16 shows the performance 
broken out by partner.  The plots were generated by aggregating the Day-Ahead decision times 
(typically between 0900 and 1200 UTC) and stratified by sky condition.  In Figure 5-16, the BNL 
and Xcel forecasts have lower MAE during fall and winter and higher in summer with performance 
for SMUD and SCE being the opposite.  This is in part due to the cloud climatology at each 
location.  At SMUD and SCE, clouds are more prevalent during the winter months while in New 
York and Colorado, they are more prevalent in summer.  The highest errors tend to be for partly 
cloudy and cloudy conditions during the summer (May-Jun and Jul-Aug). Considering the 
convective, hence patchy, nature of clouds during these months, a marked increase in error is 
expected.  

 

Figure 5-15 Sun4Cast®  performance stratified by 2month periods for all partners during all sky conditions. 
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Figure 5-16. MAE in W m-2 for Sun4Cast®  system at SMUD locations for BNL (upper left), XCEL (upper right), 

SCE (lower left) and SMUD (lower right) sky conditions. 

5.2.5 Improvements Over Baselines 

An in-depth analysis was performed for each component of the Nowcast system, including 
differing issue times, lead times, and sky conditions. Table 5-8 to Table 5-11 provide detailed 
analysis of the percentage improvements of the NowCasting components over Smart Persistence. 
Table 5-12 to Table 5-14 show improvements over NWP. This analysis was performed for the 
period of January – May 2015 but the results are generally applicable throughout the year. Positive 
values above 5% improvement but below a predetermined success value are shaded in light blue. 
Values between -5% improvement and 5% improvement are considered neutral and have no 
shading. Values that fall below -5% are considered degraded skill and are shaded in red. The 
median across all available forecast cycles, represented by Issue Time is listed directly below the 
table. The percentage of values above the success value is listed in the second row.  

The analysis displayed in Table 5-8 to Table 5-10 suggests that the NowCast components included 
in this evaluation do, in general, improve upon forecasting with Smart Persistence (SmartP). The 
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stratification by sky type suggests that the Sun4Cast NowCast system outperforms SmartP much 
of the time. In the morning hours, this could be because the SmartP system relies on previous 
observations. If no observations are available, it assumes a clearness index of 0.6, which is the 
lower bound of the clear definition. However, looking at system performance in the later morning 
indicates an improvement in clear sky forecasts overall.  

Table 5-8. Summary of NowCast component performance versus Smart Persistence (SmartP) baseline for 0-1-h 
forecast leads.  

 
Table 5-9. Summary of NowCast component performance versus Smart Persistence (SmartP) baseline for 1-3-h 

forecast leads.  

 
Table 5-10. Summary of NowCast component performance versus Smart Persistance (SmartP) baseline for 3-6-h 

forecast leads. 
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One encouraging outcome of the NowCast component evaluation is the general trend toward 
improvement in partly cloudy and cloudy conditions. While there are still errors during mid-day 
in many of the components, the NowCast system generally outperforms Smart Persistence at 
longer lead times (see Table 5-9 and Table 5-10 for 1-3-h and 3-6-h results.).  

Table 5-11. Summary of WRF Solar and DICast® component performance versus NAM baseline for 3-6-h forecast 
leads.  
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WRF-Solar-Now and the NowCast forecasts are evaluated against the NAM as the baseline in 
Table 5-12 to Table 5-14. WRF-Solar-Now, a lower resolution model more comparable to the 
NAM shows a significant number of large improvement values during clear sky conditions. 
Finally, the performance of the NowCast consensus forecast versus the NAM indicates a need for 
some additional tuning for clear sky conditions but show remarkable improvements for the 
toughest forecast conditions, the partly cloudy conditions. 

Table 5-15 and Table 5-16 present detailed analysis of WRF-Solar™ and the Sun4Cast®  blended 
forecast with operational NWP. While there are some time periods when WRF-Solar™ 
improvements exceed 30% improvement during cloudy conditions (the 16-18-hour forecast), there 
are also times during other parts of the day when 5-29% positive improvements are found. For 
WRF-Solar™, the heavy weighting of negative improvement between 10-12 UTC issue times 
suggests that there may be a need to look more closely at the forecasts on a location by location 
basis. The Sun4Cast®  system outperforms the NAM, many times with improvements above 20-
30% for partly cloudy and cloudy conditions. The uncertainty of cloudy conditions has been 
identified by stakeholders as the costliest to their operations, so an overall improvement in 
forecasting those conditions seems to outweigh the reduced skill for clear sky cases at this time. 
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Table 5-12. Summary of WRF Solar Now and NowCast versus NAM baseline for 0-1-h forecast leads.  

 
 

Table 5-13. Summary of WRF Solar Now and NowCast performance versus NAM baseline for 1-3-h forecast leads.  
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Table 5-14. Summary of WRF Solar Now and NowCast performance versus NAM baseline for 3-6-h forecast leads.  

 
 

Table 5-15. Summary of WRF Solar (top) and Sun4Cast®  (bottom) performance versus NAM baseline for clear 
conditions.  
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Table 5-16. Summary of WRF Solar (top) and Sun4Cast®  (bottom) performance versus NAM baseline for partly 
cloudy (left) and cloudy (right) conditions. 

 

When comparing models, the best way to determine if differences are statistically significant is to 
use pairwise differencing. This removes the impact of the forecast challenge and allows for a fair 
comparison between systems. Figure 5-17 through Figure 5-19 provide the MAE error curves and 
pairwise difference between the Sun4Cast®  system and the operational benchmark, NAM for 
three partner locations (BNL, Xcel and SMUD). In these figures, positive differences indicate 
improved skill by the Sun4Cast®  system and negative differences indicate improved skill by the 
NAM. The difference lines have boot-strapped confidence intervals applied.  They are computed 
at the 95% confidence level and bolded if the intervals do not intersect zero.  The bolded 
confidence intervals indicate when differences are statistically significant. Finally, issue times vary 
by partner, depending on the appropriate Day-Ahead decision time.   

In Figure 5-17, there are statistically significant improvements in the Sun4Cast®  irradiance 
forecasts for both the intra-day forecast period (first day) and DA periods. Note the 5-18 W m-2 
improvement during both periods. Improvements are smaller in the morning and evening shoulders 
of the irradiance profiles. At the Xcel Energy sites, Sun4Cast®  appears to struggle with 
performing better than the NAM during much of both forecast periods (see Figure 5-18).  Much 
of the error appears to be a 10-20 W m-2 over-prediction in the morning.  It is possible that the 
observations were influenced by terrain in the area while the forecast was not, leading to an over-
forecast in the morning.  Finally, the performance of Sun4Cast®  is similar to NAM in the morning 
and evening hours of the intra-day period at SMUD sites (see Figure 5-19).  Additionally, at the 
SMUD sites, there is some statistically significant improvement at hours 8-10 and during the 
second half of the DA forecast period. 
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Figure 5-17. Pairwise difference (blue) MAE in W m-2 for Sun4Cast®  system (orange) and NAM (black) at BNL 
(tope) for all sky conditions. Difference line has boot-strapped confidence intervals.  Bolded confidence intervals 

indicate statistically significant differences. 

 
Figure 5-18. Pairwise difference (blue) MAE in W m-2 for Sun4Cast®  system (orange) and NAM (black) at Xcel for 

all sky conditions. Difference line has boot-strapped confidence intervals.  Bolded confidence intervals indicate 
statistically significant differences. 



The Sun4Cast Solar Power Forecasting System   

 

228 
 

 

Figure 5-19 Pairwise difference (blue) MAE in W m-2 for Sun4Cast®  system (orange) and NAM (black) at SMUD 
locations for all sky conditions. Difference line has boot-strapped confidence intervals.  Bolded confidence intervals 

indicate statistically significant differences. 

Table 5-17 summarizes the median percent improvement over the operational baseline, NAM, in MAE for 
the Sun4Cast®  components and the Sun4Cast®  irradiance forecasts.  The table is for all issue times and 
forecast hours. In general, WRF-Solar™ was the best performing component, providing a 22-47% 
improvement over the NAM. In many ways, this improvement is notable because the NAM is at a 4 to 6 
times coarser resolution than WRF-Solar™. The typical response of continuous statistics, such as MAE and 
RMSE, is to doubly penalize the finer-resolution model and hence degrade its score. Therefore, these 
improvements come despite that double-penalty.  Interestingly, the Sun4Cast®  irradiance forecast did not 
match the improvements of WRF-Solar™.  Further investigation into why may be necessary to improve 
the entire system. 

Table 5-17. Median MAE improvement in % for Sun4Cast®  components versus NAM for Clear, Cloudy (Partly 
Cloudy and Cloudy) and all sky conditions at the beginning and end of the evaluation period. 

  Jan-Mar 2015 Jan-Mar 2016 

Component Clear Cldy All Clear Cldy All 

GEM 16.1 8.4 0.5 0.7 18.0 4.2 

GFS 6.9 11.7 -3.4 6.1 7.5 3.2 

WRFSolar 34.4 35.8 47.2 0 34.9 22.0 

Sun4Cast Irr 13.2 28.3 24.5 10.5 19.9 13.0 
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5.2.6 Sun4Cast®  Power 

For the power conversion module, from Table 4-1, test values for five farms range from MAE 
values of 1.3 to 4.4 normalized to capacity (also known as MAPE) were reported with a median 
value of 2.1%. During BP3, median MAPE was 2.9% of capacity for three farms. The decrease in 
error may be attributed to different algorithms and longer training on better quality-controlled 
power data. Power forecasts generated from the Sun4Cast®  system for four partners were 
evaluated to assess skill. Figure 5-20 and Figure 5-21 show the distribution of MAE and mean 
error (bias) for all plants individually through box plots. Many of the SMUD (blue) and SCE (gold) 
plants show relatively small errors with narrow error distribution. In contrast, the two Xcel Plants 
(green and red) show some of the largest range of errors. Much of the difference is likely due to 
the length of the data record. SMUD and SCE were the first partners for which forecasts systems 
were established and Xcel was the last, with some substantial data quality control issues involved. 
In addition, note that the Congentrix plan is concentrated solar and may require more specialized 
handling than was accomplished in the timeframe available. 

 
Figure 5-20. MAE in MW for all power forecast sites. 
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Figure 5-21. Bias (ME) in MW for all power forecast sites. 

 

Table 5-18 provides a summary of some of the base measures along with the maximum absolute 
error. Forecasts for the Xcel plants tended to have the highest maximum absolute error at 25-29 
MW, while those for some of the SMUD plants (76, 77 and 78) were less than 3 MW. Both Figure 
5-21 and Table 5-18 indicate that forecasts for most plants were unbiased, however the BNL plant, 
two SMUD plants (80 and 82), and the Xcel San Luis plant all experienced an over-forecasting 
bias greater than 1 MW.  Half of the locations have MAE normalized to capacity (nMAE) less 
than 10% and three-quarters of the sites are less than 15% nMAE.  The plant with the largest MAE 
error is a concentrating solar plant with a different configuration than the others.  It is clear more 
work needs to be done to reduce this error.  When all the scores for all plants are aggregated and 
normalized by total capacity, the nMAE is 0.101 or 10.1%. 
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Table 5-18. Summary of scores for all power forecasting sites. 

Partner 

Max 
Abs 
Error MAE nMAE RMSE nRMSE 

Bias 
(ME) 

BNL 17.1 2.3 0.071 3.6 0.113 1.3 

SCE 5.3 0.7 0.081 1.2 0.140 0.0 

SCE 19.4 2.2 0.085 3.8 0.148 0.0 

SCE 3.1 0.5 0.112 0.8 0.178 0.1 

SCE 7.4 1.1 0.103 1.9 0.179 0.4 

SCE 5.1 0.9 0.132 1.5 0.221 0.7 

SMUD 17.5 2.0 0.111 3.3 0.183 0.7 

SMUD 2.4 0.3 0.100 0.5 0.167 0.2 

SMUD 2.3 0.3 0.100 0.5 0.167 0.1 

SMUD 0.8 0.1 0.100 0.2 0.200 0.1 

SMUD 7.6 0.9 0.095 1.5 0.159 0.0 

SMUD 14.4 4.2 0.280 6.2 0.413 3.8 

SMUD 12.9 1.9 0.127 3.2 0.213 0.8 

SMUD 22.7 3.0 0.100 4.8 0.16 1.6 

Xcel 29.3 6.3 0.170 9.2 0.249 0.2 

Xcel 25.1 4.1 0.137 6.1 0.203 1.7 

 

Scores computed for the Western Wind and Solar Integration Study (WWSIS) and reported in the 
metrics technical note (Jensen et al., 2016) may be used as a baseline for comparison.  Table 5-15 
shows nMAE and nRMSE for the SMUD Sun4Cast®  system and the WWSIS single plant 
example.  The total capacity forecasted at SMUD is 94.4 MW and for the WWSIS single plant is 
100MW.  The Sun4Cast®  power forecast improvement over WWSIS for the hour-ahead (HA) 
forecasts is 77.2% and 73.5% in nMAE and nRMSE respectively. For day ahead (DA) forecasts, 
the improvement is 87.3% and 81.8% respectively. 
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Table 5-19. Sun4Cast®  Improvement over Western Wind and Solar Integration Study (WWSIS) as a baseline. 

 

Sun4Cast 
SMUD 

HA 

WWSIS 

HA HA % Imp 

Sun4Cast 
SMUD 

DA 

WWSIS 

DA DA %Imp 

Capacity 94.4 100 - 94.4 100 - 

MAE 2.38 11.1 87.3 1.75 14.8 88.1 

nMAE 0.025 0.11 77.2 0.019 0.15 87.3 

RMSE 4.24 17.1 81.2 3.74 22.1 83.1 

nRMSE 0.045 0.17 73.5 0.040 0.22 81.8 

 

5.2.7 Sun4Cast®  Analog Ensemble 

The Analog Ensemble (AnEn) showed promising results for providing an ensemble mean forecast 
and uncertainty quantification for GHI forecasts. During the final phase of the project, the 
technique was applied to power forecasts for SMUD locations. In Figure 5-22, the RMSE of the 
AnEn mean and Sun4Cast®  versus power measurements are plotted versus the 0-72-hour forecast 
lead for an example application. Overall AnEn provides substantial improvement to the 
deterministic forecasts as measured by RMSE, MAE, and bias. Improvements in power forecasts 
are similar to those reported for GHI forecasts with a median improvement over the Sun4Cast®  
irradiance forecasts of 35% in RMSE and 62% in MAE for the intra-day forecasts. For the day-
ahead period, the improvements are lower with 17% in RMSE and 16% improvement in MAE.  
The largest improvements can be found in the Day 2 forecasts, with 88% and 96% improvements 
in RMSE and MAE respectively over Sun4Cast®  irradiance. It should be noted that the 
Sun4Cast®  errors shown during night-time hours were not included in these calculations. The 
improvements in HA and DA forecasts were applied to the Sun4Cast®  power forecast errors to 
compute the total Sun4Cast®  system improvements over the WWSIS baseline. Table 5-20 
summarizes these results and indicates a 90% improvement in MAE for both the HA and DA 
forecasts periods over the state-of-the-science when this project started (WWSIS).  In RMSE, the 
improvements are on the order of 82-86% for HA and DA respectively. 

Probabilistic forecasts were also computed for 10, 25, 50, 75, and 90% exceedance of power 
capacity. In addition, Brier scores and probability intervals are presented. Figure 5-23 provides a 
compares the AnEn (black) and Sun4Cast®  performance for these thresholds. It shows a marked 
improvement (lower values for AnEn in black) in Brier score for probabilities of an exceedance of 
50% of capacity. The computed Brier Skill Score (BSS) across all lead times is 0.55.  
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Figure 5-22. RMSE (solid), MAE (dashed), and bias (dotted) for AnEn mean (black) and Sun4Cast®  (red) systems. 

 

Table 5-20. Final Sun4Cast®  Improvement, after AnEn applied, over Western Wind and Solar Integration Study 
(WWSIS) as a baseline. 

 

Sun4Cast 
SMUD 

HA 

WWSIS 

HA HA % Imp 

Sun4Cast 
SMUD 

DA 

WWSIS 

DA DA %Imp 

Capacity 94.4 100 - 94.4 100 - 

MAE 2.38 11.1 87.3 1.75 14.8 88.1 

After AnEn 0.90 - - 1.45 - - 

nMAE 0.01 0.11 90.9 0.02 0.15 89.7 

RMSE 4.24 17.1 81.2 3.74 22.1 83.1 

After AnEn 2.76   3.14   

nRMSE 0.03 0.17 82.8 0.03 0.22 86.8 
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Figure 5-23. Brier Score of AnEn Mean (black) and Sun4Cast®  (red) systems for probability of exceeding 10% 

(solid), 25% (dashed), 50% (dotted), 75% (dash-dot) and 90% (long dash) of capacity for a plant. 

 

Depending on the distribution of the data, two different interval forecasts may capture the same 
proportion of the observations correctly (i.e., have the same accuracy) but still have different 
interval widths. To evaluate probability interval forecasts, a set of observed values (at minimum 
30, and preferably 100 or more), are accumulated and the percent of observations falling into each 
category is calculated: 1) falls within the forecasted interval, 2) falls above forecasted interval, and 
3) falls below forecasted interval. For a ‘perfect’ forecast, the correct percentage will fall within 
the interval and about equal percentages will fall above and below the interval. The AnEn forecasts 
were evaluated in this manner. Figure 5-24 shows an example of a probability interval evaluation 
for one of the SMUD power stations. The dashed lines represent to 10th and 90th percentile of 
power derived from the AnEn members making an 80% interval. The solid black line represents 
the ensemble mean and the solid red line is the original power forecast from the Sun4Cast®  
system. The blue points are the observed values.  

The percent of observations that fall within the dashed lines over the entire data record is used to 
assess how well the AnEn predicts power. Table 5-21 summarizes the probability interval 
percentages for selected lead times in the SMUD Day-Ahead forecasts. A percentage interval of 
75-85% is considered. Percentages above 85% indicate that the probability range is too wide and 
therefore the ensemble is likely over-dispersive. Percentages under 75% indicate the range is too 
small and the ensemble is likely under-dispersive. All values in Table 5-21 are above 78%. Five 
lead times over three stations indicate the analog ensemble range was just wide enough. The other 
seven lead times over four stations are higher than 85%, indicating that the interval is too wide. 
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Figure 5-24. Probability Interval plot for SMUD Station 75 including AnEn Mean (black) and Sun4Cast®  (red) 
forecast. 10% probability and 90% probability values represented by thin dashed lines. Percentage of observed 

values (blue dots) falling with probability interval is summarized in Table 5-21. 

Table 5-21. Summary of percent of observations falling between the 10% and 90% probability lines. Green shading 
indicates percentages near the interval width of 80%.  

Lead Time Stn 1 Stn 2 Stn 3 Stn 4 

30 84.7 90.7 88.0 89.3 

33 86.0 86.0 78.0 92.7 

36 81.3 86.0 80.7 78.0 

 

5.2.8 Metrics Summary  

The Sun4Cast®  system is a very complex system, affording many opportunities to explore cutting 
edge research while improving the forecasting benchmark for solar forecast users. The evaluation 
of such a system is also highly complex. The work completed to define metrics is contained in an 
NCAR technical note (Jensen et al. 2016). Thirty-two metrics and methods were used during the 
three years of the project to assess the quality of the evolving forecast system (some not included 
in this report). These include from the base metrics: MAE, RMSE, bias, standard deviation, 
skewness, kurtosis, inner quartile range, maximum error, and minimum error. Also from the base 
metrics, categorical statistics were used to evaluate ramp events (observational base rate, forecast 
frequency bias, critical success index, Gilbert skill score, probability of detection, false alarm ratio, 
and Hanssen-Kuiper skill score). From the enhanced metrics, the following were used for 
evaluation: maximum bias error, correlation, pairwise differences to test variance, normalization, 
Brier score plus its decomposition, continuous ranked probability score, rank histograms, Brier 
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skill score, receiver operating characteristic diagrams, reliability (calibration) diagrams, 
performance diagrams, Taylor diagrams, and frequency of superior performance diagrams. 

Over the course of the project, six different components of the NowCast system were developed 
and systematically evaluated, including TSICast, StatCast-Smartpersistence, StatCast-Cubist, 
CIRACast, MADCast, WRF-Solar-Now, and a blend using MADCast and WRF-Solar-Now 
(MAD-WRF). During 2014, basic persistence, where the observation this time period is assumed 
to persist to the next, was used for the baseline. StatCast-SmartPersistence eventually became the 
baseline for comparison during the project, which allows for changes in the solar angle as part of 
a baseline forecast. The following provides a brief summary of the strengths and weaknesses of 
each component. 

TSICast provides forecasts on scales out to 12-14 min, and hence was not incorporated into the 
NowCast blended system. The range of errors, called inner quartile range, start small at 10 W m-2 
and grow to 60 W m-2 throughout the first 14 minutes. However, throughout the course of the 
project, the improvement over Smart Persistence remained at approximately 29%. 

StatCast provided two components to the system. During 2014, Smart Persistence excelled at 
improving prediction over basic persistence during the early morning hours but struggled when 
forecasts were initiated during mid-day. Figure 5-3 indicates that during 2015, errors ranged from 
100-220 W m-2. StatCast-Cubist was added to the system in 2015 based on Figure 5-3 improved 
MAE by 50 W m-2. Figure 5-6 indicates that much of this improvement comes during clear and 
cloudy conditions. 

During 2014, CIRACast showed no improvements reported over basic persistence. The CIRACast 
team worked to modify their algorithms to handle the challenges provided by this project. Based 
on Figure 5-4, CIRACast shows generally a 25-40% improvement over Smart Persistence between 
sunrise and approximately 1600 UTC. 

MADCast provided 20-60% improvement over basic persistence in 2014 skill during the first few 
hours of the forecast but struggled with skill from 3-6 h leadtimes. Figure 5-6 indicates that during 
2015, MADCast provided at least 70% improvement over Smart Persistence, with most of that 
skill being derived during partly cloudy conditions. 

WRF-Solar-Now was the top-performing component in 2014 with 20-60% improvements over 
basic persistence during most leads and across most issue times. Figure 5-7 indicates 
improvements grew to 50-60% over Smart Persistence for forecasts up to 1600 UTC but Smart 
Persistence beats out most components when initialized between 1800 and 2000 UTC. 

MAD-WRF represents WRF-Solar-Now blended with MADCast fields. It was added to the suite 
of components to evaluate in August 2015. It was run twice per day at 1400 and 1600 UTC. In 
Figure 5-6, MAD-WRF appears to decrease (improve) MAE values incrementally over WRF-
Solar-Now through 3 hours. MAE improvements for forecasts from 3-6 hours tend to be improved 
over WRF-Solar-Now by 20%. 

NowCast blended forecasts take into account all of these components through an expert system for 
blending. This expert system was informed by scores computed during 2014. Due to the multiple 
starts and stops during 2015, the developers were unable to fine-tune the blending for the 
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evaluations performed during the year. NowCast system scores tend to follow those for MADCast 
for partly cloudy conditions during all issue (initialization) times reported in Figure 5-6. However, 
during mid-day forecasts, the NowCast system provides the only forecast with MAE scores lower 
than Smart Persistence. In Figure 5-5, the NowCast system scores are broken out by partners. 
When the system was implemented in April 2015 for Xcel Energy, MAE values were 175-190 W 
m-2. By the end of the project in March 2016, MAE values had dropped significantly to 
approximately 100 W m-2. This represents a 42-48% improvement over a one-year period at this 
partner site. 

The DICast® system was also established for longer forecasts during the inter-hour forecasting 
timeline as well as Day-Ahead forecasts. The evaluation of this system focused primarily on the 
comparison of WRF-Solar™ and the full Sun4Cast®  system with the operational baselines. The 
NAM was established as the baseline for the evaluation. In Table 5-21, WRF-Solar™ and 
Sun4Cast®  systems both tend to improve Day-Ahead forecasting when aggregated over all 
partners and all issue times. Improvements range from 22-42% for WRF-Solar™ and 13-24% for 
the blended system. At BNL and SCE partner locations, these improvements were statistically 
significant at Day-Ahead decision times. At SMUD and Xcel Energy sites, the improvements or 
lack of improvements are primarily not statistically significant. Finally, for inter-hour forecasts, 
NAM and WRF-Solar™ have the lowest errors, follow by Sun4Cast®  and then the higher 
resolution operational model, HRRRops, and its parallel research model, HRRRx. Improvements 
by WRF-Solar™ over HRRRops and HRRRx are on the order of 10-15%. Note that HRRRx 
already has assumed some of the improvements made to WRF-Solar™. 

The Sun4Cast®  power conversion module was used to compute power from the irradiance 
forecasts generated by the Sun4Cast®  system. Power conversion errors dropped from 3.1% to 
2.1% from 2014 to 2015 based on MAE calculations. Evaluations of power forecasts were 
performed at four partner locations. In Table 5-18, errors ranged from 0.3 MW to 4.2 MW. Based 
on Figure 5-14, the larger errors were primarily due to a high bias. Sun4Cast®  power conversion 
improves upon the state-of-the-science WWSIS power forecast performance by 70-80%. 

Finally, the Sun4Cast®  power forecasts were integrated into an AnEn module to compute 
ensemble members and ensemble means. The AnEn module decreased RMSE by 17% over the 
blended Sun4Cast®  power forecasts and provided skill in probabilistic forecast at an 
unprecendented Brier Skill Score of 0.55. It should be noted that the target improvement in Brier 
Skill Score was 0.1. To satisfy the utility partners’ needs, a Probability Interval Evaluation was 
performed using the AnEn members and developing an envelope representing an 80% band. In 
Table 5-21, it was shown that the AnEn method provides either the correct width interval or an 
interval that is slightly too large. With tuning, this method appears to be very promising for adding 
additional improvements upon the Sun4Cast®  system. Once the AnEn is applied, the full 
Sun4Cast®  system improves upon WWSIS power forecast performance by 80-90%. 

5.3 ECONOMIC EVALUATION  

5.3.1 Economic evaluation metrics 

An important component of the project “A Public-Private-Academic Partnership to Advance Solar 
Power Forecasting” in building a solar power forecasting system is to help integrate solar energy 
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into the power mix more efficiently, economically, and reliably, and thus advance higher 
penetration of renewable energy. One measure of the success of this effort is evaluating the 
economic benefits of improved solar power forecasts. One dimension of the use of solar power 
forecasts is in day-ahead (DA) decision making with respect to unit commitment. Working with 
stakeholder partners, it was determined that production cost modeling (PCM) for use in DA 
decision-making was a viable approach to evaluate economic benefits of improved solar forecasts 
in the context of the project.  

Although several partners agreed to undertake PCM using their in-house models as a contribution 
or part of the current project, due to project delays and the stop-start nature of project 
implementation under DOE control, six of the seven partners who originally agreed to undertake 
PCM modeling as a contribution to the project dropped out of the economic analysis.  

In this report we present analysis of the PCM modeling undertaken by Xcel Energy (Keith Parks) 
for the Public Service Company of Colorado (PSCo) to derive estimates of the value of reductions 
in solar power forecast errors. Those model results are then scaled to a national level by NCAR 
economist Dr. Jeff Lazo. 

After some brief background on the economic value of solar forecasts we provide an overview of 
the methods used in this analysis. Section 5.3.4 presents the analysis followed in section 5.3.5 by 
a discussion of the results.  

5.3.2 Background of Economic Analysis 

The decision context for DA planning is determining the likely configuration of generation assets 
to meet the forecast demand with the ultimate goal of maintaining system reliability. As different 
types of generation assets require different lead times for start-up and shut-down and face different 
cost structures in doing so, once DA decisions are made there are constraints in real-time (RT) in 
meeting actual demand (economic dispatch). 

Reductions in total production costs with improvements in solar power forecasting thus represent 
the avoided costs of forecast errors. 

The objective of PCM is to determine the optimal system configuration (e.g., lowest cost) given 
expected demand (load) while taking into consideration all other relevant factors (e.g., fuel costs, 
maintenance on facilities, transmission constraints, etc.). Utilities have PCMs set up with the 
configuration of their systems and use their PCM in day-ahead decision-making, and can also use 
their PCM for contingency and policy analysis.  

PCMs include information on the utility’s generation options including coal, natural gas, 
hydroelectric, nuclear, wind, solar, and other sources. Given primary objectives of maintaining 
system reliability there is a certain degree of “flexibility” built into the DA decisions. At low levels 
of solar penetration, solar power variability may fall within built-in ranges of system flexibility, 
and thus, average errors in solar power forecasts may have no economic impact – and improving 
forecasts at low levels of penetration may have no economic value.  

At higher solar penetration levels, a utility may have to adjust quickly to larger changes in power 
generation (or load reduction in the case of distributed PV) at higher marginal costs if quick-start 
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/ stop generation has higher marginal costs than base load generation (e.g., large-scale coal or 
nuclear). The economic costs of forecast errors may thus increase as solar penetration increases.  

This will also depend on the geographic distribution of solar power because with more distributed 
solar generation, variability may even decrease as non-correlated forecast generation errors cancel 
out. This is likely in our case study using a scenario of significantly increased solar generation in 
Colorado but also much more widely distributed than current solar generation (of which all utility-
scale solar plants are located now in the San Luis Valley). 

In a study similar to the one reported here, Martinez-Anido et al. (2016) use a PCM approach to 
derive value estimates for day-ahead solar power forecasting improvements for the New England 
Independent System Operator (ISO-NE) with varying solar power penetrations (4.5%, 9.0%, 
13.5%, and 18.0%) and solar power forecasting improvements (25%, 50%, 75%, and 100%). Their 
analysis indicates that improved solar power forecasting reduced operational electricity generation 
costs with increasing benefits as penetration levels increase and at higher levels of forecast 
improvements. We note that from Martinez-Anido et al. Figure 10 (2016, p. 200) at penetration 
levels of 13.5%, a 50% improvement in solar forecasts generates approximately $13M annual 
generation cost savings just for NE-ISO.  

5.3.3 Methods 

5.3.3.1 Modeling Approach 

PSCo was undertaking an analysis of increased solar penetration as part of a regulatory 
requirement with the Colorado Public Utility Commission (PUC) – their Solar Integration Study 
(SIS). This is based on ongoing policy analysis at PSCo evaluating operations and costs of much 
larger solar penetration at 1,800 MW, compared to the roughly 300-400 MW of utility scale solar 
at this time (or rather, the near future). At this time, we do not have additional information on the 
configuration of the system in the modeling analysis (this is currently proprietary information). 
Based on phone conversations with Keith Parks (PSCo), the future solar generation used in this 
analysis is expected to be more distributed geographically across Colorado than current 
commercial solar generation, which is all in San Luis Valley. Future generation would likely 
include facilities in northeast and southeast Colorado. The basic approach in this analysis involved:  

1) Developed analysis of solar power forecast error (initially undertaken at NCAR by Tara 
Jensen and Tressa Fowler, based on generation and forecast information in current PSCO 
solar facilities in the San Luis Valley). 

2) “Set up” the PSCo PCM for regulatory analysis (Solar Integration Study) for analysis year 
2024 with approximately 1,800 MW solar generation distributed statewide. 

3) Developed a profile of solar generation for the year 2024 on an hourly basis (366x24 hours 
= 8,784 hours). 

4) Ran RT PCM for one year for an “actual solution” using the commit from the DA (based 
on the actuals) and running a RT solution (essentially a perfect forecast). Steam and 
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combined cycle (CC) generation were fixed at the RT point and combustion turbines (CT) 
were allowed to commit to meet load and determined operational costs.1  

5) Added random errors to actuals (based on prior analysis of baseline forecast errors) to 
generate a “power forecast” (truncated at with no power forecasts below zero) and used 
that as a solar power forecast to run DA and set up the PCM. Then ran PCM (based on set 
up with imperfect forecast) and ran in RT mode using the actuals to compute the “actual” 
cost (to determine costs under forecast error). 

6) Ran exact same forecast through with error reduced by exactly 50% at each hour to set up 
and then ran in RT mode with actual solar power to determine costs. 

The output from the runs of the PCM includes hourly solar forecast, solar actual, and costs 
identified as generation costs, start and shutdown cost, and wind curtailment (also called FO&M 
Cost in the output spreadsheet) for one year (2024). Keith Parks then calculated total cost for three 
forecast scenarios (perfect, baseline, and 50% error reduced) costs and calculated aggregate “error 
costs” and compared these to determine the “cost of forecast errors” for baseline (estimated from 
the beginning of project at 20%) errors and with 50% reduction in errors (to 10% error, which is 
roughly what we observed after full Sun4Cast®  deployment). Results are shown below after a 
discussion of the errors used in the modeling. 

Figure 5-25 shows four days of solar generation compared to the power forecast (for the first four 
days of 2024) as run in the analysis scenario with baseline forecast error levels. The analysis was 
run for the one-year period from January 1, 2024 through December 31, 2024, which includes a 
leap day, for a total of 366 days or 8,784 hours. The dataset had 4,542 hours with non-zero solar 
generation. The total MWh solar power generated during the year is 2,900,043.88 MWh. The total 
solar power forecast was for 3,156,274.70 MWh so an 8.84% over-estimate of power was 
forecasted over the course of the year.2 

                                                           
1  As stated in the PSCo 2011 Electric Resource Plan Volume 2 Technical Appendix 
(https://www.xcelenergy.com/staticfiles/xe/Regulatory/Regulatory%20PDFs/PSCo-ERP-2011/Exhibit-No-KJH-1-
Volume-2.pdf) about CT generation: “These simple cycle, natural gas fired units are available in a wide range of sizes 
(25 MW to 300 MW). Combustion turbines are very similar to a jet engine with an electrical generator connected to 
the turbine shaft. Combustion turbines are typically inexpensive to build but are less efficient sources of generation. 
The ideal role for CTs is to be run for a few hours of the year typically at times of the highest electric demand.” 
2 As actual solar power cannot fall below zero, large negative errors added to actuals are truncated at zero and thus 
on average there will be a positive bias to the added errors.  

https://www.xcelenergy.com/staticfiles/xe/Regulatory/Regulatory%20PDFs/PSCo-ERP-2011/Exhibit-No-KJH-1-Volume-2.pdf
https://www.xcelenergy.com/staticfiles/xe/Regulatory/Regulatory%20PDFs/PSCo-ERP-2011/Exhibit-No-KJH-1-Volume-2.pdf
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Figure 5-25: Example of solar forecast compared to actual solar generation for a four-day period in January 2024. 
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5.3.3.2 Error of Solar Power Forecasts  

For non-zero hours of actual production (4,542 hours), the average hourly solar power actual is 
638.49 MWh and average hourly forecast is for 694.91 MWh so there is a slight upward bias in 
forecasts. Given that there could be a solar power forecast for a given hour and no actual solar 
production due to weather conditions, the percent error for any one hour can be considerably larger 
than 100%. Over the 4,542 actual hours the baseline mean absolute forecast error baseline was 
128.03 MWh or roughly 20%. Figure 5-26 shows a histogram of the errors used in the current 
analysis (note this is the bias error and not the absolute error). 

 
Figure 5-26: Distribution of solar forecast bias errors (MW) using baseline forecast error. 
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5.3.3.3 Results 

Using the basic model output from the PCM scenarios, Keith Parks aggregated component and 
total annual costs for the different scenarios. We summarize these results in Table 5-22. For each 
scenario the generation costs, start and shutdown costs, and wind curtailments costs are aggregated 
to total production cost (for the year).  

Table 5-22 PCM output and calculation of cost savings from reduction in forecast error. 

Property Perfect Forecast 
$(000) 

Forecast 
(1800MW of 
solar state-wide) 
$(000) 

50% 
Improvement to 
Forecast 
(1800MW of 
solar state-wide) 
$(000) 

Generation Cost 1,172,848.82 1,173,816.71 1,173,056.56 

Start & Shutdown Cost 21,782.52 22,009.18 21,985.44 

Wind Curtailment Cost 13,612.59 13,603.99 13,568.06 

Total Production Cost 1,208,243.94 1,209,429.88 1,208,610.06 

Error Cost (Forecast Cost minus 
Perfect Cost) 

  1,185.94 366.12 

Value of forecast improvement 
(Cost with forecast minus cost 
with 50% improvement to 
forecast) 

    819.82 

 

The “error cost” row shows the difference in total production costs between scenarios with forecast 
error and with perfect forecast for the two forecast improvement scenarios. For the 2024 analysis, 
the total cost due to baseline levels of forecast error (roughly 20% mean absolute error) is $1.19 
million. With a 50% reduction in forecast error the error cost falls to $366,000 – a $819,200 savings 
or 69% reduction in error costs due to a 50% reduction in forecast errors. With a total reduction in 
forecast errors over the year to 290,755 MWh, this averages into a production cost savings of 
$2.8196 per MWh reduction in error. 
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5.3.4 Analysis 

5.3.4.1 Regression Analysis 

To take advantage of the significant quantity and variability of the PCM output data we undertook 
a regression analysis of the relationship between production costs and forecast errors – including 
other variables from the data set that may also influence production costs to better understand the 
specific impact of forecast error on costs. The dependent variable in the regression analysis is the 
difference (delta) in the hourly production cost (PC) with forecast error and with no forecast error 
(e.g., perfect forecasts) as shown in Equation 5.1.  

ΔPC = PC(with forecast error) - PC(with perfect forecast)  (5.1) 

A set of linear regression models was fit adding a series of explanatory variables to understand 
potential influences on production costs and best isolate the effect of forecast errors. Future work 
could explore a broader range of econometric models, including looking at time lags, as the set-up 
of the system in any one period is likely affected by prior periods that are interdependent with the 
forecast error. Equation 5.2 shows the regression model,  

ΔPC = f(forecast error, error reduction mode, TC, Solar MWh, month, hour) + ε  (5.2) 

where f denotes a functional relationship, TC is total production costs, Solar MWh is the absolute 
level of actual solar power each hour, month and hour are the month and hour of the observation, 
and ε allows for noise. As costs are expected to be lower with perfect forecasts than with error in 
the forecasts, we expect the ∆PC to be positive and increase with larger error. Forecast errors were 
included as the absolute value of the difference between the forecast’s MWh for the hour and the 
actual MWh.  

To take full advantage of the PCM output, we included all model output by “stacking” the data set 
to include PCM output with baseline error and with 50% reduction in error. As we “stacked” the 
data from the two PCM model conditions, we included an “error reduction mode” to test for 
“structural” differences in costs in the two error regimes. This dummy variable is set to “1” for 
output from the 50% forecast error reduction (and “0” for the baseline forecast error). A significant 
parameter estimate on this may be an indicator of non-linearities in the response to error reduction.  

Including “TC” (or total production costs) as an explanatory variable also examines potential non-
linearities in differences in production costs as a function of total production costs. This may be 
similar to examining the impact of penetration levels or serve as a proxy for total production (e.g., 
total MWh from all fuel sources that are not currently included in the data set). We expect that the 
larger the value of TC, the smaller the difference in TC due to changes in absolute forecast error, 
as such error then has a smaller marginal role in the day-ahead decision.  

Including Solar MWh (or the absolute level of actual solar power each hour) as a predictor may 
capture the relative impact of absolute forecast error as well. The larger the Solar MWh the lower 
relative impact of any specific level of absolute forecast error (e.g., lower percent error) and thus 
potentially less impact on overall production costs. 
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We included dummy variables for month and hour (11 month dummies with December as the 
excluded month and 23 hourly dummies with 23:00 the excluded hour) to examine if the difference 
in production costs in the different forecast modes varies by month or hour. We have no a priori 
expectations on these variables but are aware that there are likely seasonal and time-of-day aspects 
of both solar generation and overall power generation that may influence the difference in costs 
related to different forecast errors. (At this time we have not included the regression output on 
hours given no a priori expectations on signs or reasonable interpretation of results). 

For the monthly dummies we included the dummies as stand-alone explanatory variables and, in 
a different regression model, interacted the monthly dummies with the absolute error. This 
interaction term examines different potential impacts of forecast errors during different months. 
We have no a priori expectations on these interactions but, if significant, could suggest future 
work to better understand how forecast errors play different roles in different times of the year. 

We included all hours of the day (including hours without sun) as there were differences in 
production costs in some of the “dark” hours likely related to differential set-up costs related to 
forecast errors. 

We note that the adjusted R-squared on all of the models is relatively low, but (in part due to the 
large number of observations) we find a number of significant results. We also note that at this 
time we have generally only implemented linear regression analysis (ordinary least squares) 
without any analysis of explicit non-linearities, potential multi-collinearity, heteroscedasticity, or 
intertemporal correlations. Future work could examine more sophisticated econometric modeling. 
Table 5-23 displays the results for four different models as described below. 

Model 1: The simplest model examines only the potential impact of forecast error on differences 
in production costs between perfect and imperfect solar forecast conditions. The positive and 
highly significant parameter estimate (3.936) indicates that a 1.0 MWh increase in absolute 
forecast error results in a production cost increase of $3.94.  

Model 2: The second model adds three explanatory variables Error Reduction Mode (with Current 
mode = 0 and the 50% Reduction mode = 1), Total Production Cost (the total cost of energy 
production for that hour across all generation), and Solar Generation (the total MWh actual 
production in that hour).  

The negative and significant parameter estimate on Error Reduction Mode of (-1488.83) indicates 
that on average, after controlling for the magnitude of the error, production costs in the low error 
mode are close to $1,500 less per hour than in the baseline error mode. This may be an indication 
of non-linearities in the relationship between forecast error and costs where there is a “structural” 
reduction in costs when errors are lower on average.  
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Table 5-23. Regression analysis. Dependent variable is the difference in hourly production cost between “With 
Forecast Error” and “With Perfect Forecast” (hourly error cost). Significant estimates highlighted in bold 

(N=17,568). 

 Model 1 Model 2 Model 3  Model 4 
Model Fit 
  F Value 

 
48.320 117.790 

 
44.830  

 
35.510 

  Adj R-Sq 0.003 0.026 0.036  0.029 

Intercept -857.513 *** 2807.412 *** 4081.523 ***  2970.719 *** 
T value 59.588 250.990 12.650  11.710 
Absolute Error of Forecast 3.936 *** 4.946 *** 4.667 ***  2.752 ** 
T value 0.566 0.623 7.440  1.980 
Error Reduction Mode  -1488.826 *** -1498.076 ***  -1475.739 *** 
T value  105.875 -14.220  -13.940 
Total Cost  -0.018 *** -0.023 ***  -0.019 *** 
T value  0.002 -13.670  -11.490 
Solar Generation (MWh) 

 -1.430 *** -1.380 ***  -1.500 *** 
T value  0.131 -10.410  -11.280 
Jan (1 for Jan; 0 otherwise) 

  -63.504 Jan*AbsErr 2.474 
T value   -0.250  1.060 
Feb   -315.314 Feb*AbsErr 1.282 
T value   -1.230  0.650 
Mar   -765.545 *** Mar*AbsErr 0.149 
T value   -3.030  0.080 
Apr   -1408.566 *** Apr*AbsErr 1.781 
T value   -5.470  0.810 
May   -1324.402 *** May*AbsErr 0.265 
T value   -5.150  0.110 
Jun 

  -1447.707 *** Jun*AbsErr 0.350 
T value   -5.630  0.130 
Jul   290.886 Jul*AbsErr 11.781 *** 
T value   1.150  4.330 
Aug   365.072 Aug*AbsErr 9.803 *** 
T value   1.450  4.560 
Sep 

  -179.455 Sep*AbsErr 2.530 
T value   -0.700  1.050 
Oct   -1828.982 *** Oct*AbsErr -3.069 
T value   -7.220  -1.430 
Nov   168.272 Nov*AbsErr 6.072 *** 
T value   0.660  2.860 
*, **, and *** represent significant p values at 10%, 5% , and 1% respectively 
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The negative and significant parameter estimate on Total Production Cost of -0.018 indicates that 
as total production costs increase the difference in total production costs between imperfect and 
perfect forecast decreases. This may be an indication that (assuming total costs are monotonically 
increasing with total energy production) there is a decreasing impact of forecast error as production 
increases. This may also be an implicit indication of the impact of penetration levels – higher total 
energy production translates to lower penetration keeping solar production constant. The negative 
parameter estimate would thus indicate that there is a smaller impact of forecast error at lower 
penetration levels.  

The negative and significant parameter estimate on Solar Generation (-1.430) indicates that as total 
MWh of solar production increase, the difference in production costs with imperfect and perfect 
forecasts decreases. This may indicate that proportionally smaller errors (holding absolute error 
constant, percent error falls as total solar generation increases) have a smaller impact on the 
difference between production costs with imperfect and perfect forecasts. 

Having controlled for these other influences on production costs, the parameter estimate on 
Absolute Error of Forecast increased to $4.95/MWh in Model 2 from $3.94/MWh in Model 1. 

Model 3: This model includes a set of dummy variables for 11 months (December is the excluded 
dummy and thus the other parameter estimates are interpreted with respect to differential 
production costs in December). A significant parameter estimate on any of these dummy variables 
would indicate that there is significant impact of forecasts errors on the difference in production 
costs with perfect and imperfect forecasts in different months. March, April, May, June, and 
October all had negative significant parameter estimates indicating that the difference in 
production costs with perfect and imperfect forecasts was lower in these months compared to 
December (the excluded month). We have no a priori expectation on this or specific explanation 
and feel it may be worthwhile to examine this in future research. 

Model 4: This model included a set of dummy variables for 11 months (December is excluded 
again) but each is interacted with the absolute forecast error for that observation. Significant 
parameter estimates here would suggest that the impact of forecast errors on differences in 
production costs varies by time of year. Positive and significant parameter estimates in July, 
August, and November indicates that the cost of forecast errors is higher in those months 
(compared to December). For any given month the change in production cost due to a one-unit 
change in forecast error is the sum of the parameter estimate on forecast error and the parameter 
estimate on forecast error month dummy for that month as per Equation 5.3.  

error monthΔPC = (Forecast Error)+ (Forecast Error*Mo* * nth)β β  (5.3) 

Therefore, from Model 4, for the month of July would suggest that the cost of a one-unit (1.0 
MWh) error in the forecast is $14.53 – considerably more than a cost of $2.75 for a one-unit 
forecast error in December.  

error julyΔPC = (Forecast Error)+ (Forecast Error*July)* * 2.752 11.781+ =$14.53β β =  (5.4) 
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As before we had no a priori expectations on dummy variable sign or magnitude and believe this 
is amenable to future research given the indication of significant differences month to month of 
the impact of forecast errors (and thus in reducing forecast errors). 

We have not presented the regression results using “hours” in the analysis at this time as there 
were no a priori expectations on the estimates and no specific meaningful interpretation of the 
results. 

5.3.5 Results and Discussion 

Overall the results here are compatible with those of Martinez-Anido et al. (2016) in that higher 
levels of solar penetration are associated with higher costs of forecast error and that greater 
reductions in forecast error save more in terms of reduced or avoided costs – likely in a non-linear 
manner. 

5.3.5.1 Benefit to Forecast Error Reduction in Xcel Energy (2024) 

As noted in Table 5-22, the PCM analysis showed a direct savings of $819,200 from a 50% 
reduction in forecast error. To compare that result to the results of the econometric analysis we use 
the regression results to calculate a benefit based on 50% error reductions from the current 
forecasts. Table 5-24 shows the cumulative (total annual) absolute forecast error, the cumulative 
error with 50% reduction, and the difference in cumulative error (which is simply also 50% of the 
baseline error. Using the parameter estimate from the regression analysis in Model 1 of $3.94 cost 
reduction per MWh error multiplied by the total error reduction indicates a total annual value of 
$1.14M. This is reasonably comparable to the direct approach used in Table 5-24 of $891,820.  

Table 5-24. Economic value of a 50% reduction in forecast error for Xcel Energy in 2024. 

Cumulative forecast error (baseline) (MWh) 581,511.34 

Cumulative forecast error (50% error reduction) (MWh) 290,755.67 

Difference in error 290,755.67 

Cost of Error per MWh  $3.93589 

Total value of 50% reduced forecast error $1,144,382.33 

 

5.3.5.2 Aggregation to National Values 

While the PSCo analysis is unique in that each utility is unique, we use the results from this 
analysis to suggest aggregate national values for solar power forecast error reduction. The Energy 
Information Administration projects increased solar energy generation growing at 6.8% annually 
from 2013 to 2040 (Energy Information Administration, 2015; Table A.16). By 2040 solar energy 
(measured as net summer generation) is projected to be 110.1 billion kilowatt hours (up from 18.5B 
kWh in 2013). This would then represent 13.56% of all generation in 2040 compared to 3.8% in 
2013 (as per EIA 2015). Figure 5-28 plots the EIA projections for solar power generation 
indicating a steady increase over the next 25 years. 
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Figure 5-27: Projected solar generation (Source EIA 2015, Table A.16). 

Using EIA projections of solar power generation and per MWh savings for forecast error reduction 
from the baseline analysis, we generate order-of-magnitude estimates of the national value of 
improved (50% error reduction) solar power forecasts. Using the Billion kWh projections from 
EIA and a baseline percent absolute error of 20% (the mean baseline error used in the current 
analysis), we calculate total annual forecast error in terms of MWh. Assuming a 50% reduction in 
MAE through the solar power forecast improvement program this gives an estimate of the 
reduction on total forecast error (in MWh). Multiplying this by the “per MWh savings” estimated 
from the regression model ($3.94 avoided generation cost per MWh reduction in forecast error) 
we generate annual national benefit estimates as indicated in Table 5-25. 

Recognizing, as noted, that this is order of magnitude, there are several caveats to this national 
aggregate benefit estimate. First we note that the EIA generation projections are for summer 
generation, which is likely peak generation for solar power, and thus we may be overstating annual 
total power generation. As noted in Martinez-Anido et al. (2016) and in our analysis, benefits are 
not linearly related to penetration levels, whereas the current analysis does not account for this. 
The benefits also depend on baseline levels of error and future levels, as well as adoption of 
forecasting improvements, and we have not assessed these on national levels (i.e., we are assuming 
PSCo is nationally representative).  
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Table 5-25. Aggregation to national benefit estimates at assumed solar photovoltaic penetrations. 

Year 2012 2013 2020 2025 2030 2035 2040 

Billion KWh 11.2 18.5 51.3 58.7 70.9 87.5 110.1 

MWh 11,200,000 18,500,000 51,300,000 58,700,000 70,900,000 87,500,000 110,100,000 

20% Absolute Error 
(MWh) 

2,240,000 3,700,000 10,260,000 11,740,000 14,180,000 17,500,000 22,020,000 

50% Absolute Error 
(MWh) 

1,120,000 1,850,000 5,130,000 5,870,000 7,090,000 8,750,000 11,010,000 

$/GW Error 
Reduction 

$3.94 $3.94 $3.94 $3.94 $3.94 $3.94 $3.94 

Benefit  $4,408,197 $7,281,397 $20,191,116 $23,103,674 $27,905,460 $34,439,038 $43,334,149 

 

Also as indicated in Martinez-Anido et al. (2016) (Figure 5-25), a 13.5% level of solar penetration 
and 50% forecast improvement generated roughly $13M in benefits just for NE-ISO. Given those 
results, the current aggregation to national benefits may even be an underestimate. 

Finally, we note that the benefits from a research program to improve solar power forecasting are 
ongoing. While there are likely also ongoing costs for observation, modeling, and forecasting 
systems, we do not have an estimate of those in order to develop benefit-cost estimates. As 
indicated in Table 5-26, extrapolating linearly between the specific years indicated in the EIA 
projections, using a 3% rate of discount3, and a 26-year analysis timeline starting in 2015, we 
develop an estimate of the present value of benefits from the forecast improvements of $455M in 
production cost savings.  

  

                                                           
3 The discount rate of 3% reflects a relatively conservative approach to discounting given federally suggested nominal 
rates of 3.2% on 20 year and 3.5% on 30 year projects as per Office of Management and Budget (OMB) Circular A-
94 Appendix C. Revised November 2015. (https://www.whitehouse.gov/omb/circulars_a094/a94_appx-c). 

https://www.whitehouse.gov/omb/circulars_a094/a94_appx-c
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Table 5-26. Present value of national benefits. 

Year Current Value Benefit Discount Rate 3% Present Value Benefit 

2015 $10,969,888 1.000 $10,969,888 

2016 $12,814,133 0.971 $12,440,906 

2017 $14,658,379 0.943 $13,816,928 

2018 $16,502,625 0.915 $15,102,239 

2019 $18,346,870 0.888 $16,300,956 

2020 $20,191,116 0.863 $17,417,034 

2021 $20,773,627 0.837 $17,397,586 

2022 $21,356,139 0.813 $17,364,495 

2023 $21,938,651 0.789 $17,318,574 

2024 $22,521,163 0.766 $17,260,596 

2025 $23,103,674 0.744 $17,191,303 

2026 $24,064,031 0.722 $17,384,368 

2027 $25,024,389 0.701 $17,551,603 

2028 $25,984,746 0.681 $17,694,347 

2029 $26,945,103 0.661 $17,813,887 

2030 $27,905,460 0.642 $17,911,453 

2031 $29,212,176 0.623 $18,204,062 

2032 $30,518,891 0.605 $18,464,431 

2033 $31,825,607 0.587 $18,694,190 

2034 $33,132,322 0.570 $18,894,900 

2035 $34,439,038 0.554 $19,068,060 

2036 $36,218,060 0.538 $19,468,992 

2037 $37,997,082 0.522 $19,830,392 

2038 $39,776,104 0.507 $20,154,224 

2039 $41,555,127 0.492 $20,442,369 

2040 $43,334,149 0.478 $20,696,631 
 

Present Value Total Benefits 
 

$454,854,415 
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5.4 PREDICTABILITY OF SOLAR IRRADIANCE 

A tiger team was formed as part of this project to assess the limits of predictability of solar 
irradiance. Although not much work has been accomplished specific to irradiance, various 
researchers have addressed the general predictability issue. The first serious study dates to Lorenz 
(1969), which posed the issue of whether the atmospheric system predictability is constrained or 
not. That work builds on Lorenz’s (1963) seminal earlier work demonstrating that the atmosphere 
is chaotic with a sensitive dependence on initial conditions, and led to development of a full field 
of study in the US and abroad as recently reviewed by Bunimovich (2014). Lorenz’s 1969 work 
specifically states that “the uncertainty demanded by Heisenberg’s Principle appears not to be very 
significant, because of the much greater uncertainty resulting from our failure to observe the state 
of the atmosphere and formulate the governing equations with anything approaching perfection” 
(pp. 289-90). Lorenz (1969) set up a system of low-order equations of the basic state of the 
atmosphere to test whether a small error will become much larger than the initial error and whether 
reducing initial error will commensurately reduce the final error. He shows that each scale of 
motion exhibits a finite range of predictability.  

A yet earlier work by Gleason (1967) proposed theoretical limits to atmospheric predictability. 
Various studies between then and the present time have sought to further assess this issue. Much 
of that work was focused on the synoptic scales, which are critical to defining medium-range 
predictability. An important recent effort is that of Rotunno and Snyder (2007), which used a 
surface quasi-geostrophic equation as the basis, which is more appropriate for the power spectrum 
assumed by Lorenz (1969). They found that the specific model was less important than the power 
of the energy spectrum (-5/3 vs. -3). These studies have advanced our understanding, but say little 
about predictability at cloud scale. This partnership began the process of investigating this issue in 
more detail. 

One approach to the investigation was to quantify the variability of the resource, and then to 
forecast it. We note that not only does this approach provide information to the team on the limits 
of predictability, but it also leads toward forecasting the variability. Utilities have stated that 
prediction of the variability is important to their operations: that information is useful in 
determining the amount of reserves that must be carried at a particular time (Bartholomy et al. 
2014).  

That work to quantify the variability was accomplished by the University of Washington team led 
by Laura Hinkelman (Hinkelman 2014; Sangupta and Hinkelman 2014; Hinkelman et al. 2015; 
Schaeffer et al. 2016). This work, reported in section 2.2.2, quantified the variability of the 
resource due to satellite observations of clouds and well as from ground measurements. 

The team followed up by forecasting the variability. The first example of this uses the StatCast 
approach to predict variability using the Cubist and RD-ANN approaches. The RD-ANN results 
appear in section 2.2.7. The results using StatCast-Cubist are summarized below as drawn from 
McCandless et al. (2015). The data used to train Statcast-Cubist to predict variability of irradiance 
at the SMUD sites was detailed in section 2.2.6. In that data we matched the SMUD GHI 
observations with the hourly METAR weather observations, where each 15-minute SMUD GHI 
interval is matched with the corresponding METAR observations at the top of the next hour. For 
example, the irradiance observation at 26 January 2014 15:15, 15:30, 15:45, and 16:00 would all 
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be matched with the meteorological data from 1/26/2014 16:00 to form a composite dataset. In 
addition to the GHI temporal or spatial standard deviations in the last 15-minute interval, the GHI 
temporal or spatial standard deviations from the previous three 15-minute intervals are also 
included in the predictor dataset. These four GHI standard deviations for the 15-minute intervals 
are provided as predictors so that the forecasting technique can model the recent trend in 
variability. Using the prior four 15-minute intervals is appropriate because SMUD reports data on 
an hourly basis, so this study matches what would be implemented operationally. The predictors 
include the previous observations, observed weather data, and time information, which are all fed 
into the Cubist model regression tree to predict the variability. The temporal standard deviation 
datasets include 40,127 instances combined for all eight SMUD sites. The spatial standard 
deviation dataset consists of 4057 instances aggregated at all eight sites. Instances where one or 
more location had missing data were omitted from the spatial standard deviation training and 
testing datasets.  

Ten-fold cross-validation randomly partitions the data into ten subsets to be used for training and 
testing the model and provide an assessment of how the model tree generalizes to an independent 
set of data. The training of the model tree was performed on nine of ten subsets and the remaining 
subset was used as validation. This process was repeated for all of the ten subsets and the errors 
were averaged over the ten repetitions to reduce variability in the results. We analyzed the model 
tree’s predictive ability for GHI spatial variability by examining the predictive skill of the standard 
deviation of the GHI among the SMUD observation sites. The MAE for the GHI spatial standard 
deviation prediction increases with forecast lead time as did that of the GHI temporal standard 
deviation prediction (Figure 5-29). However, the error range over the forecast lead times is greater 
than that for the temporal data. Values of the MAE range from approximately 15 W m-2 at 15 
minutes to 21 W m-2 at 180 minutes.  

The relative error of the Cubist model tree compared to climatology (the mean GHI spatial standard 
deviation computed on the training dataset) is plotted in Figure 5-30. The relative error for the 
model tree begins at approximately 0.35 for the 15-minute forecast lead time and levels off at about 
0.50 for forecast lead times longer than 75 min. This relative error provides evidence that the model 
tree is able to provide utility companies with at least twice the accuracy as assuming climatological 
average variability. This is a meaningful result for utility companies that have regional coverage 
with a range of distributed rooftop solar and solar power farms because the model tree is able to 
provide a substantial increase in the accuracy of predicting short-term solar radiation variability 
across a region. 
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Figure 5-28. Mean absolute error (MAE) for the model tree on the spatial standard deviation of the GHI (green - 

triangles) and temporal standard deviation of the GHI (red – squares). 
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Figure 5-29. Relative error for the model tree on the spatial standard deviation of the GHI (green - triangles) and 

temporal standard deviation of the GHI (red – squares). 

 

We note that the team also assessed the variability of cloudiness in terms of the short-range 
predictions made by the Nowcasting version of WRF-Solar™ and reported in section 2.5 based on 
Jiménez et al. (2016b). In recognition of the stochastic nature of cloudiness as assessed on a grid, 
that section uses statistical techniques to gauge the effectiveness of the model predictions. 

Finally, in recognition of the limits of predictability, this project has sought to quantify the 
uncertainty using the analog ensemble. Section 4.6 describes that work and shows the uncertainty 
bounds predicted by our models. 
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6 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

6.1 SUMMARY OF SUN4CAST®  PROJECT 

The DOE-funded Public-Private-Academic Partnership to Advance Solar Power Forecasting 
project functioned as a collaborative team, with each participant doing their job to provide portions 
of the Sun4Cast®  Solar Power Forecasting System. Chapter 1 of this report laid out the 
progression of the project, beginning with understanding industry needs and configuring a system 
to meet those needs based on looking at the problems in terms of a value chain. The end result is 
a functioning system that is described in chapters 2-4 and thoroughly evaluated as described in 
chapter 5. 

6.1.1 The Nowcast System 

The shortest ranges of forecasts must leverage measurements that are available in real-time, 
typically those from ground-based sensors. The shortest range forecast (0 – 6 hour) is supplied by 
the NowCast system. The NowCast system consists of several short-range forecasting systems: 
TSICast, StatCast, CIRACast, MADCast, WRF-Solar-Now, and MAD-WRF. TSICast operates on 
the shortest time scale, with a latency of only a few minutes and forecasts that currently extend to 
approximately 15 min. This project facilitated research in improving the hardware and software so 
that new high definition cameras deployed at multiple nearby locations allow discernment of the 
clouds at varying levels and advection according to the winds observed at those levels. 
Pyranometers supply the in situ data for initializing the StatCast forecast. During the course of this 
project, short-range statistical forecasting was advanced by emphasizing regime-dependent 
forecasting, both implicitly through a regression tree approach, and more explicitly by combining 
clustering techniques with Artificial Neural Networks. These methods make a substantial 
improvement (from 15-50%) over short-range persistence forecasts. 

A second category of systems employs satellite imagery and uses that information to discern 
clouds and their motion, allowing the systems to project the clouds, and the resulting blockage of 
irradiance, in time. The satellite data typically has a latency of 15 – 60 min. This project helped 
push the NOAA data to a reduced latency while allowing the recovery of higher resolution data. 
CIRACast was already one of the more advanced cloud motion systems, which is the reason that 
team was brought to this project. During the project timeframe, the CIRA team advanced cloud 
shadowing, parallax removal, and implementation of better advecting winds at different altitudes. 
A second satellite-based system, MADCast, assimilates data from multiple satellite imagers and 
profilers to incorporate a fully three-dimensional picture of the cloud into the dynamic core of 
WRF. That allows advection of the clouds via the WRF dynamics directly. 

One issue with the observation methods described above is that they do not allow for cloud 
formation and dissipation, which is in the domain of NWP models. Thus, WRF-Solar™ was 
adapted for nowcasting, being run at lower resolution more frequently to fill the gap of time where 
changes in the clouds are most likely. Finally, as the project progressed, it became obvious that 
combining the advantages of WRF-Solar™ with MADCast, which would assimilate the current 
cloud observations using the most forefront assimilation techniques, while also allowing for cloud 
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formation and dissipation. Thus was born MAD-WRF, which was formulated and deployed toward 
the end of the project.  

The Nowcasting system was evaluated systematically as well as with case studies. Both types of 
evaluations revealed that each component has a “sweet spot” where it is most effective. Thus the 
blending of the different nowcasting components is an effective method of nowcasting. 

6.1.2 WRF-Solar™ 

Most modern forecasting systems rely on some numerical weather prediction (NWP) model for 
their base forecasts. Thus, a major emphasis of this project was to improve NWP by developing, 
testing, evaluating, and improving WRF-Solar™, the first NWP model specifically designed to 
meet the increasing demand for specialized forecast products for solar energy applications 
(Jiménez et al. 2016a,b). The WRF-Solar™ upgrades are depicted in Figure 6-1. The first 
augmentation focused on improving the solar tracking algorithm to account for deviations 
associated with the eccentricity of the Earth’s orbit and the obliquity of the Earth. Because solar 
energy applications require more frequent calls to the radiation package, inaccuracies in the solar 
position caused a non-negligible error. Second, WRF-Solar™ added the direct normal irradiance 
(DNI) and diffuse (DIF) components from the radiation parameterization to the model output in 
addition to global horizontal irradiance (GHI), parameterizing them (Ruiz-Arias et al. 2010) when 
needed. Third, efficient parameterizations were implemented to either interpolate the irradiance in 
between calls to the radiative transfer parameterization, or to use a fast radiative transfer code that 
avoids computing three-dimensional heating rates but provides the surface irradiance (Xie et al. 
2016). 

Fourth, a new parameterization was developed to improve the representation of absorption and 
scattering of radiation by aerosols (aerosol direct effect), including allowing high spatio-temporal 
variability of aerosols. The treatment of aerosols (Ruiz-Arias et al. 2014) allows for the ingestion 
of aerosol optical properties with time stamps in order to accurately model the temporal variations 
in aerosol loading, permitting the ingested aerosol concentration to represent the aerosol optical 
properties in WRF-Solar™. 

A fifth advance was that the aerosols interact with the cloud microphysics, altering the cloud 
evolution and radiative properties (aerosol indirect effect). This effect has been traditionally only 
implemented in atmospheric chemistry models, which are significantly more computationally 
expensive than NWP models without detailed chemistry. WRF-Solar™ uses a simplified treatment 
of the aerosols (only two aerosol species are allowed) that accounts for changes in the size of cloud 
hydrometeors in order to represent this aerosol indirect effect (Thompson and Eidhammer 2014) 
with minimal increase in computational cost (~16%). The aerosols are advected by the model 
dynamics and the parameterization is linked to the WRF-Solar™ aerosol parameterization in order 
to have a fully coupled representation of the cloud-aerosol-radiation system. 

A sixth development accounts for the feedbacks that sub-grid scale clouds produce in shortwave 
irradiance as implemented in a shallow cumulus parameterization (Deng et al. 2003, 2014). The 
scheme includes predictive equations for the sub-grid scale cloud water/ice content and the cloud 
fraction.  
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Finally, when coupling WRF-Solar™ with elements of MADCast, MAD-WRF allows 
assimilation of infrared irradiances from satellites to determine the three-dimensional cloud field 
(Auligné 2014a,b), resulting in an improved initialization of the cloud field that further increases 
the performance of short-range forecasts.  

These enhancements were made in collaboration with Penn State and NREL. NCAR responded to 
numerous requests to use beta versions of WRF-Solar™. The community sees it as a way to 
advance deployment of solar energy by enabling better forecasting of the irradiance resource. 
NCAR expects to further exercise and improve the WRF-Solar™ in new locales in future projects. 

 
Figure 6-1: Diagram showing the WRF-Solar™ augmentations that now include specific interactions between the 
radiation, clouds, and aerosols. The radiation scheme was augmented with an improved solar tracking algorithm 
and explicitly calculates all irradiance components with a capability for high-frequency output of GHI, DNI, and 
DIF. It additionally allows time variation in the irradiance components between function calls. The aerosols are 
now allowed to vary in time, as well as to be advected by the winds, in order to allow feedback to the radiation 

scheme. The aerosols additionally become the microphysics species that determine the cloud condensation nuclei for 
cloud formation. Clouds in turn scavenge the aerosols. A new shallow convection scheme enhances the capability 

for the cloud feedback to the radiation. Both aerosols and clouds fully feed back to determining the scattering, 
absorption, and emission in the radiation scheme. 

6.1.3 The Engineered System 

Building the individual component models is necessary, but not sufficient, to supplying a high-
quality solar power forecast. It is also critical to smartly engineer a system that smoothly handles 
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data input and output and effectively blends the results of each of the components. This engineered 
system must allow for missing observations or model results as well as allowing for “graceful 
degradation” when not all systems are performing optimally. The engineered system was described 
in detail in chapter 4. 

The Nowcasting Expert System Integrator (NESI) uses recent performance information to smartly 
blend the NowCast components. Although this is currently accomplished using historical statistics, 
there is evidence that moving to a dynamically blended system in the future could prove 
advantageous. 

The Dynamical Integrated foreCast (DICast®) system smartly blends the NWP models, both our 
own WRF-Solar™ output as well as publicly available models. Although DICast® has shown a 
high degree of accuracy for other forecast variables, this project was the first time that it was 
employed for irradiance forecasts. Development during the project included building algorithms 
to account for disparate model time frames and consideration of solar angle in blending the model 
output correctly. The DICast® and NowCast systems must in turn be blended during the overlap 
periods. 

The blended system forecast is in terms of irradiance. Thus it is necessary to convert irradiance to 
power. This was accomplished by using a Cubist regression tree model that was built on historical 
irradiance and power observations. One advantage to this empirical approach to power conversion 
is that it is easier to train with disparate data, as long as the data are consistent. Thus, the 
training/testing process is equivalent whether the irradiance observations are in terms of GHI, DNI, 
or plane-of-array (POA). 

The last step in the forecast process is the Analog Ensemble (AnEn), which both corrects the 
forecast and provides probabilistic information to quantify the uncertainty of the forecast. Again, 
this project was a first opportunity to exercise AnEn for solar power and it performed admirably. 

The project additionally leveraged cost-share funds to develop a gridded irradiance forecasting 
system, the Gridded Atmospheric Forecast System (GRAFS-Solar). GRAFS can be used as a 
testbed for new techniques or as an operational system that could feed distributed solar forecasts. 

6.1.4 System Performance 

The system has been fully assessed. The component systems were each thoroughly vetted by their 
developers during the iterative improvement stage. Those results are blended into the individual 
discussions of each system. In addition, a formal assessment was accomplished by the NCAR 
metrics team, who employed the full range of metrics developed with the SunShot, NOAA, and 
IBM teams during the projects’s first year. Those metrics supplied a more complete snapshot of 
the system than available with traditional MAE and RMSE. 

From these metrics, we confirmed that each of the NowCast components has a “sweet spot” where 
its performance provides value, with the blended system providing a significant improvement over 
smart persistence. The Day-Ahead system also shows substantial improvement, especially with 
the inclusion of WRF-Solar™. Improvements range from 22-42% for WRF-Solar™ and 13-24% 
additional for the blended system.  
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In addition, an econometric analysis was accomplished based on production cost modeling in 
collaboration with Xcel Energy. The methodology and intermediate results are described in section 
5.3. We found that when scaled to a national level, an estimated savings discounted over a 26-year 
period, a savings of $455M could be achieved with the sort of improvement in solar power 
forecasting documented as part of this project. 

6.2 SCIENTIFIC LESSONS LEARNED 

The project team was comprised of some of the most-experienced scientists and engineers who 
predict weather for societal applications. The project funding provided this team an opportunity to 
advance solar power forecasting. As described above, much was accomplished. But as always 
happens with any real-world applied projects, challenges were also encountered, which led to 
unexpected lessons learned. 

Some scientific challenges and lessons learned from them include: 

• The results of the project confirmed the value of blending multiple types of forecasts by 
multiple models. The whole produces a much better forecast than any single part. Each 
system module adds value, but not necessarily equally. 

• Blending in the NowCast system showed value. Although this system used the expert 
system approach to statistically determining weights to use in blending as each component 
model improved over the course of the project, an automated dynamic blending method 
would be preferable once the component models are stable. 

• As shown in the WRF-Solar™ work, the source of aerosol data is important. Chapter 3 
results indicate that real-time forecasts of aerosols produce a much better forecast than 
simply employing climatology. 

• When using sky imagers, the higher resolution equipment substantially helped to improve 
the forecasts. Using multiple cameras also led to forecast improvements. 

• The user-defined metrics were meaningful and a more thorough assessment is available 
with a broader set of metrics that were defined and used in this project. 

• There are limits to predictability due to the chaotic nature of atmospheric flow and 
sensitivity to initial conditions. Although we have approached these limits in some time 
frames, we have not yet hit them. Further assessment of these limits would be helpful. 

• The availability and quality of data is a critical issue for any forecasting system. Some 
specific issues include: 

o The quality of the data and the metadata often did not meet our expectations. It was 
sometimes difficult to discern specific information, such as averaging period and 
valid time. When these times are not consistent, the forecast will necessarily be 
degraded. Issues with time zones and standard vs. daylight saving time were not 
treated consistently in data collection. 
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o Each utility has its own format for recording measurements of meteorological 
variables (including irradiance) and power. This fact necessitates customizing data 
ingest systems for each utility partner. The lesson is that standardized data 
formatting would greatly benefit all who deal with such data. 

o Each utility records a different type of irradiance measurement. Some use GHI, 
while others use POA, or even DNI for concentrated systems. This fact makes it 
more difficult to design and build a generally applicable system; instead a system 
must be adaptable and tailored to ingest and use these different types of irradiances. 

o Historical data were often unavailable. Note that statistical learning and artificial 
intelligence methods require historical data for training the system, so where it does 
not exist, those techniques cannot be employed. 

6.3 PROJECT MANAGEMENT CHALLENGES AND LESSONS LEARNED 

This was a relatively large project with a substantial budget, but also included a large number of 
participants. Thus, we encountered some management challenges from which we learned. 
Organizing and keeping that many partners on track to reach a common goal was at times difficult. 
It was quite beneficial to include DOE sponsored national laboratories in the project. Their budgets 
were provided directly to them by SunShot. This was advantageous in that it saved the project 
from incurring additional overhead charges to manage those laboratories, but at the same time, it 
was more difficult to include them fully as part of the integrated team. Both laboratories performed 
admirably and worked closely with the NCAR team to accomplish goals. It was additionally 
difficult to manage the details of accomplishments across cost share partners, who again were quite 
beneficial to the project, but they each had their own goals rather than always sharing project goals. 

The most beneficial way for integrating the project team was holding the project workshops at 
NCAR in 2013 and 2014. It is unfortunate that the final workshop was cancelled by SunShot. We 
would highly support SunShot in configuring and organizing a community partnership around 
solar power forecasting in the future. 

Although we had various major challenges in accomplishing this project, the overarching problem 
that made the project difficult was a three- to four-month lag in contracting associated with the 
three contract renewal periods during the course of the project. During each of these periods NCAR 
and our subcontractors were not authorized to spend funds. This resulted in three periods of STOP 
WORK that had a large negative impact on the project. These project hiatuses resulted in: 

• Loss of personnel who had to be assigned to other projects for the interim, making it 
difficult to obtain their time when the project resumed. In one case, a talented software 
engineer on the project could not deal with the uncertainty of the project funding and left 
NCAR for another company. 

• When the project resumed and we recovered the personnel needed for the work, there was 
a start-up time where everyone had to re-familiarize themselves with details of the work 
they were accomplishing. 
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• The quality of the end product is degraded due to the team not being able to iteratively 
improve the individual components and the blended system during some of the key periods. 

• We lost the interest of the industry partners when there were 3-4 month long periods with 
no new work. Although the system was robust enough to continue to make forecasts, we 
were not able to analyze and communicate with the end users during those periods, causing 
a loss of continuity that damaged the working partnership. 

• It was difficult to continue to pay personnel. This was particularly problematic for the 
graduate students involved, who were working on a single project and were relying on 
continued funding to complete their degree. This makes it difficult to include graduate 
students in a project that is likely to have breaks during project renewal. 

• The team was asked to rewrite the Statement of Project Objectives (SOPO) repeatedly and 
to write in target metric goals that are impossible to achieve in an atmospheric system. 
Thus, we added a tiger team to study and quantify the limits of predictability to describe to 
the SunShot management the impact of the chaotic nature of atmospheric flow (and cloud 
prediction in particular) on predictability of solar irradiance. Changes in project 
management personnel at SunShot resulted in these explanations occurring repeatedly. 

• Requiring an additional evaluation in the final year that was not part of the original plan 
was particularly problematic. That was the year of quasi-operational continual forecasting 
when it was most important to have continuity. Fortunately, most systems continued to 
operate in the background to collect data and provide forecasts. But since personnel were 
reassigned, the systems were not actively monitored during the periods with stop work and 
the systems were not continuously improved during this period. In addition, funds were 
diverted to prepare and present the continuation review, taking funds away from the science 
that was needed during that period. This additional review was particularly 
counterproductive, resulting in a stop work in the middle of the operational period, and 
substantially affecting fine-tuning, and thus, the final quality of some system components. 

• One of our utility partners shared, “It went well in the first phases; however, as the stops 
and starts began to pile up it seemed a bit disconnected on what was going on. The face-
to-face meetings were the best part of the project as people with actual questions could talk 
and exchange ideas and I think some real discoveries happened for some. I wish we could 
have been more engaged in the forecast analysis and been able to assist in the fine-tuning 
and model learning that needs to happen for a forecast to improve. … We could really not 
get off the ground on receiving and analyzing the forecasts. The starts and stops put a large 
damper on our ability to stay focused on the forecasts and in the end I had to release folks 
to other activities.” 

6.4 NETWORKS FOSTERED 

This project was built on leveraging a network of experts in all aspects of solar power forecasting 
to develop, build, deploy, assess, and test the Sun4Cast®  System in a wide variety of locations 
and climatologies. Thus, we brought together university and laboratory researchers, software 
engineers skilled in Big Data issues, utility and ISO personnel, and forecast providers to assess 
and help us to iteratively improve the system. As described in the introduction (Chapter 1), the 
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kick-off workshop and second year workshop were effective in cementing the collaborations and 
allowing time for deep exchange of ideas. The specific partners that were formally part of the 
project and their roles include: 

National Laboratories 
• National Center for Atmospheric Research – lead laboratory for project 
• Brookhaven National Laboratory – built TSICast and provided LISF data 
• National Renewable Energy Laboratory – built FARMS radiative transfer algorithm and 

collaborated on statistics 
• National Oceanographic and Atmospheric Administration – funded separately – 

collaborations on observations, satellite data, and modeling advancements 
 
Universities 

• The Pennsylvania State University – built shallow convection scheme, collaborated on 
StatCast versions, built new observation capability 

• Colorado State University – built, tested, and deployed CIRACast 
• University of Washington – statistical assessment and collaborations on StatCast 
• University of Hawaii – forecasting in Hawaii 
• University of Buffalo – sky imager research 
• Stony Brook University – subcontractor to BNL – helped build TSICast 

 
Utilities 

• Xcel Energy Services 
• Sacramento Municipal Utility District  
• Long Island Power Authority  
• New York Power Authority  
• Hawaiian Electric Company  
• Southern California Edison  

 
ISOs 

• New York Independent System Operators  
• California ISO  
• Hawaiian Electric Company  
• Public Service Company of Colorado 

 
Forecast Providers and a Solar Contractor 

• Solar Consulting Services 
• Atmospheric and Environmental Research  
• Global Weather Corporation  
• MDA Information Systems  
• Schneider Electric/Telvent DTN 

 
In addition, we added several affiliate partners who strengthened our partnership: 
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Affiliate Partners 

• University of Buffalo, Tarun Singh, Professor of Mechanical Engineering, working with 
sky imagers for campus array. 

• Army Research Laboratory, White Sands, Gail Vaucher (primary contact), solar array on-
site and doing related research. 

• University of Jaén, Spain, José Ruiz-Arias, solar power forecasting. 
• Commonwealth Scientific and Industrial Research Organization (CSIRO) of Australia, 

Alberto Troccoli, building forecasting system. 
 
As we communicated with our partners, they have all emphasized the large importance of solar 
power forecasting. In most regions, solar power has not yet reached the percentage of capacity that 
necessitates full forecasting systems. In some areas, however, it has and the utilities and ISOs rely 
on forecasting. Others, who are not at that capacity yet, see the need coming in the future or have 
learned from their experience with higher penetrations of wind power. 
 
Finally, as we advanced our system and talked about it at conferences and workshops, a number 
of people have requested beta-versions of portions of our systems. Most of those related to WRF-
Solar™. The WRF-Solar™ users and scientists who we have specifically communicated with 
regarding its configuration and use, as well as some of their comments, include: 
 
Supplied Code and Configuration Information 

• Zack, John: john@meso.com Meso / AWS Truepower March 2015. NCAR provided 
WRF-Solar™ code. AWS Truepower applied this beta-version of WRF-Solar™ over 
Hawaii, with nested grids at 18, 6, and 2 km over the Hawaiian Islands. Because they run 
an ensemble of models, this allowed a direct comparison with these other model 
configurations. On request, they were able to supply an initial subjective analysis of this 
comparison. Their impression was that WRF Solar performed better than the other models 
in some situations when the evolution of the cloud patterns exhibited high predictability 
among all the models. However, in situations when the overall predictability seemed low, 
WRF Solar did not demonstrate discernable improved skill relative to the other models. 
Their interpretation of this is that in the low predictability cases, the use of better physics 
doesn't improve the forecasts because the uncertainty (sensitivity) is most likely in the 
initialization process and not in the physics. However, in cases where the sensitivity to the 
initialization is low, the importance of the physics formulation is increased and in those 
cases, they report that WRF-Solar™ seemed to exhibit an advantage. Note that they did 
not have the very recent version that adds in the MADCast satellite data assimilation. It 
would be interesting for NCAR and AWS Truepower to team on such an analysis over 
Hawaii.  

• Xiaohui Zhong: x6zhong@eng.ucsd.edu San Diego University August 2015. Xiaohui 
visited NCAR over a several month period in 2015 to work more closely with NCAR WRF 
researchers. They are using the code, primarily over Southern California for stratocumulus 
cases and expect to provide more detailed feedback.  

• Charlotte Hoppe: ch@eurad.uni-koeln.de Institute of Energy and Climate Research 
(Germany) September 2015. We provided the WRF-Solar™ code. She used the WRF-
Solar™ model to calculate GHI, DNI and DHI for a case study in Southern Spain. They 
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used AOD and SSA from their chemistry transport model, EURAD-IM, as input to WRF-
Solar™. Here, she liked the infrastructure of WRF-Solar™, so that the coupling was 
relatively easy. They first looked at cloud-free days and have obtained good results. A 
colleague will present a poster about this work at EGU: 
http://meetingorganizer.copernicus.org/EGU2016/EGU2016-5691.pdf.  
Next, they plan to analyze also cloudy situations and have requested advise on model 
application.  

• Mavromatakis, Fotis: fotis@physics.uoc.gr T.E.I of Crete (Greece) November 2015. We 
helped him to configure the model and answered many other questions. He is actively using 
the WRF-Solar™ model. He is new to WRF and is running the model over Crete. He is 
running WRF-Solar™ and comparing against observations they have. He sent plots of 
simulations versus observations. He is actively sending feedback with comments/questions 
on the use of WRF-Solar™. He provided feedback of the model performance. 

• Eastman, Joe: joe.eastman@windlogics.com Wind logics December 2015. Helped with 
options in WRF-Solar™ in the official WRF release. 

• Tewari, Mukul mukultewari1@gmail.com IBM January 2016. Actively using the model 
and helped him with many questions. He provided feedback on the model performance. 
This group is also actively using WRF-Solar™ and comparing its performance against 
observations, including sharing his experience with the code. Mukul will likely send more 
feedback regarding the model performance and to get additional comments/suggestions 
from our side. 

• Mouhamet, Diallo: mouhamet.diallo@ird.fr French Guiana University host at IRD 
Cayenne February 2016. IRD is the Institute of Research for Development. We provided 
the code and we did not hear back from him. 

• Gordon Huva, Robert: serrgh@nus.edu.sg Solar Energy Research Institute of Singapore 
(SERIS) April 2016. We provided the code. 

• Stevens, Duane: dstevens@hawaii.edu University of Hawaii March 2015. We provided the 
code and we have not heard back from him.  

• Schroedter, Marion: marion.schroedter-homscheidt@dlr.de DLR (Germany) April 2015. 
We provided the code and we did not hear back from her.  

• Michael Palmer: michael.palmer@greenpowerlabs.com Green Power Labs. July 2015. We 
provided the code and we did not hear back from him.  

• José A. Ruiz-Arias jararias@ujaen.es Universidad de Jaén (Spain) July 2015. José's 
collaborators are probably using the code.  

 
Communications Regarding Aspects of WRF-Solar™: 

• Hahmann, Andrea N.: ahah@dtu.dk Technical University of Denmark (DTU) Jan2016 - 
Brief inquiry about options used in WRF-Solar™ in the BAMS paper. 

• James, Eric: james@noaa.gov NOAA Sporadic communication regarding WRF-Solar™ 
augmentations in the official WRF release. 

• Navarro, Jorge: jorge.navarro@ciemat.es CIEMAT (Spain) Sporadic communication 
regarding WRF-Solar™ augmentations in the official WRF release. 

• Many other researchers with inquires about WRF-Solar™ after presentations at 
conferences. 

http://meetingorganizer.copernicus.org/EGU2016/EGU2016-5691.pdf
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Finally, we have worked with professional organizations to organize special sessions at 
conferences and workshops around solar power forecasting. Some of these sessions include: 

• Organized and chaired: Joint Session between AMS 15th Conference on Artificial 
Intelligence and its Applications to Environmental Science and Eighth Conference on 
Weather, Climate, and the New Energy Economy, AMS Annual Meeting, January 2016.  

• Several Team Members on Local Organizing Committee for International Conference on 
Energy and Meteorology Conference and Local Organizing Committee, including chairing 
renewable energy sessions, Boulder, CO, June 2015. 

• Organized and moderated: Utility Variable Integration Group Tutorial on Stochastic 
Forecasting Methods and Applications, 16 February 2015. 

• Organized and chaired: Joint Session between AMS 13th Conference on Artificial 
Intelligence and its Applications to Environmental Science and Sixth Conference on 
Weather, Climate, and the New Energy Economy, AMS Annual Meeting, January 2014.  

• Organized and chaired: Joint Session between the AMS 12th Conference on Artificial 
Intelligence and its Applications to Environmental Science and Fifth Conference on 
Weather, Climate, and the New Energy Economy, January 2013. 

• Panel Moderator: Challenges and Opportunities in Applying AI Techniques to 
Environmental Science Problems, AMS Annual Meeting, Austin, TX, January 2013. 

• Organizing Committee for International Conference on Energy and Meteorology 
Conference, Toulouse, France, June 2013. Organized Solar Energy session. 

6.5 RECOMMENDATIONS FOR BEST-PRACTICE SOLAR POWER FORECASTING 

A major goal of this project was to draw conclusions about the performance of each component 
system and make recommendations for best practices in configuring solar power forecasting 
systems. Some specific recommendations include: 

• It is best to blend various component models or systems together. The forecast from 
blended models/systems is invariably significantly better than those produced by a single 
model or approach. 

• Use a base NWP model tuned for the purpose. We found very significant improvements in 
forecasting by employing WRF-Solar™. 

• Including multiple NWP models improve the blended forecast for time scales from 3 h 
through the day-ahead forecast and beyond. 

• It is possible to improve upon persistence, even at the very short-range by using methods 
trained on targeted in situ observations. StatCast trained to employ pyranometer data was 
better than persistence, even at short time scales (15 min to 3 h) and TSICast, which uses 
multiple sky imagers improved upon persistence in the time range less than 15 min. 
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• Satellite based cloud advection is useful, but tricky. For regions near the mountains or 
along coasts, it is necessary to include some model physics to account for stationary clouds 
as well as cloud formation and dissipation. It is important to include the improvements 
related to correcting for shadowing and parallax as accomplished by CIRA.  

• NWP can be combined with satellite data via assimilation to produce a fast-running, short-
range (0-6 h) forecast that is helpful for nowcasting (see MAD-WRF, section 2.4). This 
produced the best forecast on the 1-6-h time scale. 

• The analog ensemble approach is helpful for both improving on the deterministic blended 
forecast as well as for producing a probabilistic prediction that is well calibrated. 

• An empirical power conversion method is amenable to training site-specific information, 
even when missing metadata. Artificial intelligence techniques are capable of predicting 
directly from an observation to a target value as long as historic training data is available. 

• An enhanced series of metrics is helpful for evaluating and tuning individual models as 
well as the entire system. 

Finally, we asked our utility and ISO partners where they see solar power forecasting going in the 
future and some comments include: 

• “…the industry need is still there and it will only get larger as more distributed energy is 
connected to the grid.” 

• [Forecasts will be from] “centralized RTO/ISO/BA generated forecasts that will have 
multiple uses and at varying granularities.” 

6.6 FINAL CONCLUSIONS, IMPACT, AND PATH FORWARD 

This project served to advance the state-of-the-science of solar power forecasting as originally 
planned. The team that worked on the project included some of the best-known researchers in the 
field. The team worked extremely synergistically and produced demonstrably better models than 
existed previously, blended the models to produce improved consensus forecasts, and used 
forefront post-processing methods to further correct the models as well as convert the irradiance 
forecasts to power and provide probabilistic forecast information to the utility and ISO partners. 
Although challenges were encountered, the team rose above those and completed the project 
admirably. The Sun4Cast®  system and its component models were thoroughly assessed using a 
full range of metrics, some of which were specifically derived for this project. An economic 
evaluation estimated saving in one particular service region, which was then scaled up to estimate 
a substantial potential for savings across the US as more solar power is deployed in the future.  

Thus, as the capacity of solar power grows, solar power forecasting with systems like Sun4Cast®  
will provide enabling technologies that will make the economics more feasible, empowering more 
solar power deployment. Such enhanced deployment has the potential to improve air quality, 
mitigate climate change, improve energy security, and provide enhanced employment 
opportunities throughout the renewable energy sector. 
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The team members have all grown in their research capabilities in solar energy and the 
collaborative research is expected to continue. A direct point of continuity is continued 
collaboration among the partners. For instance, the Sun4Cast®  system is fully deployed 
operationally for Xcel Energy’s Public Service Company of Colorado (PSCo) for their commercial 
solar plants, delivered by Global Weather Corporation (GWC). Xcel, PSCo, and GWC are all 
partners in this project. MDA Federal reports that they are assuming portions of this project’s 
systems as part of their forecasting system. As reported above, WRF-Solar™ has been widely 
tested and many of its component modules are already part of the public WRF release and being 
used too widely to document. In addition, NCAR plans to continue to advance the Sun4Cast®  
system in regions throughout the world with wide partnerships. A specific partnership that is in 
the process of starting is between NCAR, BNL, and the Electric Power Research Institute (EPRI). 
That project, led by EPRI, will deploy sky imagers over New York City and provide forecasts 
using Sun4Cast®  systems to utilities in New York. We expect additional collaborations to 
continue. 

In summary, this project not only advanced the state-of-the-science through cutting edge research, 
but on a grander scale, it enabled a host of partnerships that are in the process improving the 
economics of solar energy and advancing its deployment. 
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