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ABSTRACT

Knowledge of the optical properties, in particular the complex refractive indices (CRI), of
aerosols is crucial to better quantify their impact on the environment from remote sensing
techniques. However, the CRI data available in the literature provide mainly reflectance
measurements on bulk materials or pressed pellets and span over limited wavelength
ranges. Here, we present an improved retrieval methodology combining an experimental
setup that allows simultaneously the measurement of high spectral-resolution extinction
spectra (up to 0.5 cm™') and the recording of the size distribution (SD) of both fine (down
to 10nm) and coarse (up to 20 um) particles. Introducing these experimental measurements
in @ numerical iterative process, the real and imaginary parts of the CRI are retrieved using
an optimal estimation method (OEM) associated with scattering theories and the single sub-
tractive Kramers—Kronig (SSKK) relation. Using this methodology, we are able to accurately
determine for the first time CRI of an aerosol flow for kaolinite over a wide spectral range
from far infrared (FIR) (50 um/200cm™") up to UV (0.25 pm/40,000cm™"). The mean values
of the total uncertainty of the retrieved real and imaginary parts are 1.6% and 0.6%, respect-
ively.
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1. Introduction solar radiation, major injections of these particles can

Mineral dust aerosols are the most abundant aerosol ~ have a significant effect on the atmosphere including

type by mass emitted into the atmosphere (5000 Tg
y~', Kinne et al. 2006; Kok et al. 2017) via natural
processes such as wind erosions (Méndez Harper
et al. 2022). Due to their ability to absorb and scatter

changes in temperature and precipitation patterns,
and impacts on the radiation balance of the Earth
(Osborne et al. 2011; Satheesh and Moorthy 2005).
Given the variability and spatial heterogeneity of their
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concentration, size, and chemical composition, it is
important to quantify these aerosols in order to better
identify their sources and understand their environ-
mental impact from regional to global scale. Ground-
based networks such as EARLINET (www.earlinet.org)
use Lidar to acquire physical information such as
height and plume thickness and AERONET (https://
aeronet.gsfc.nasa.gov) uses sun photometers to obtain
optical information, mainly aerosol optical depth
(AOD). Dedicated satellite instruments for instance
MISR, Polder, or MODIS can derive information
regarding AOD as well as regional trends of combus-
tion and dust aerosols (Yu et al. 2020) and radiative
forcing. However, a better characterization of the
aerosol, such as obtaining chemical, mineralogical,
and microphysical (concentration, size distribution
[SD]) aerosol properties, requires accurate information
about the complex refractive index (CRI) m(v) =
n(v) + ix(v), where (v) denotes spectral wavenumber,
n(v) and k(v) represent the real and the imaginary
part of the refractive index respectively. Indeed, what-
ever the type of measurement is, the algorithms used
to retrieve particle parameters require aerosol models
that depend on CRIs. Although not historically dedi-
cated to aerosol studies, hyperspectral and high spec-
tral resolution infrared instruments, such as the
Atmospheric Infrared Sounder (AIRS) and the
Infrared Atmospheric Sounding Interferometer (IASI),
combined with precise CRI datasets, have demon-
strated their efficiency in determining chemical com-
position (Alalam et al. 2022) and microphysical
parameters (Clarisse et al. 2010; Deguine et al. 2023b)
of aerosols. It is, therefore, necessary to improve our
knowledge regarding CRIs for better exploitation of
current and upcoming infrared satellite instruments
such as the IASI-NG, IRS-MTG, and in particular the
FORUM mission which will be launched in 2027.
Indeed, the latter will perform far infrared (FIR)
measurements, a spectral region for which informa-
tion regarding CRIs is very limited. We can also add
that in the context of inter-instrument comparison
exercises or the use of instrumental synergies it is
essential to have homogeneous CRI data over the wid-
est possible spectral range (Chen et al. 2022).
Literature datasets give the optical constants of
minerals obtained from bulk materials or pellet tech-
niques (Egan 2012; Glotch, Rossman, and Aharonson
2007; Longtin et al. 1988). Using pellet techniques has
several limitations such as the modification of the
microphysical properties of the particles (SD and
morphology). Furthermore, in pellet samples, the par-
ticles are present in a compressed matrix causing
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modifications of the vibrational modes. For bulk
measurements, there is a strong underestimation of
the scattering signal. Therefore, as explained by
McPheat et al. (2002) and deduced from the works of
Mogili et al. (2007) and Reed et al. (2017), these types
of measurements are not representative of atmos-
pheric aerosols and in turn are not suitable for aerosol
CRI retrieval, in particular in the infrared. Recently, a
few research facilities have been implementing a new
methodology for the retrieval of CRI of aerosols by
using laboratory resuspension and SD measurements
(Di Biagio et al. 2019; Engelbrecht et al. 2016; Mogili
et al. 2008; Reed et al. 2017). Among these
approaches, our method has already shown its effi-
ciency on multiple dust aerosols such as amorphous
and crystalline silica (Quartz) as well as volcanic ashes
(Deguine et al. 2023a; Herbin et al. 2023; Hubert et al.
2017). Since then, modifications and improvements
have been established such as the extension of spectral
coverage by adding a new breadboard capable of
measuring FIR extinction spectra from 100 to
650 cm™', and optimization of our numerical formula-
tion for a finer and faster retrieval.

This experimental system has been used in this
work to measure the CRI of kaolinite (Al,05-2Si0,:
2H,0), also known as aluminum silicate which is a
layered silicate clay mineral formed from the dissol-
ution of rocks rich in feldspar and aluminum silicate
minerals. It is a 1:1 dioctahedral phyllosilicate mineral
where each kaolinite layer has one alumina octahedral
sheet and one silica tetrahedral sheet (Varga 2007). It
is one of the most abundant minerals present in clays
and can be found mainly in tropical climates having
high humidity (Hoshino, Sanematsu, and Watanabe
2016). Clay minerals contribute to two-thirds of dust
mass, whereas kaolinite alone contributes up to 13%
(Atkinson et al. 2013). Although kaolinite is a signifi-
cant component of atmospheric mineral dust aerosols
produced by dust storms, its laboratory extinction/
absorption spectrum is not often measured and if
done, it is with low spectral resolution compared to
satellite observations (Balan et al. 2001; Laskina et al.
2012; Mogili et al. 2007). Datasets for the CRI of kao-
linite are presented in Figure 1, however, each is over
a limited spectral range (Arakawa et al. 1997; Egan
2012; Glotch, Rossman, and Aharonson 2007; Querry
1998; Roush, Pollack, and Orenberg 1991). CRI data-
sets from Glotch, Rossman, and Aharonson (2007),
Roush, Pollack, and Orenberg (1991), and Querry
(1998) are in the infrared region alone, ranging
between 100-2000, 400-2000, and 50-4000cm’,
respectively. As for Arakawa et al. (1997) and Egan
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Figure 1. Literature values of the real part (top) and
the imaginary part (bottom) of complex refractive indices of
kaolinite. The inset shows a zoomed portion between 1500
and 4000cm™' highlighting the region with the most
inconsistencies.

(2012), their sets are in the range of 4000-
77,000cm™" and 4000-54,000 cm™", respectively, cov-
ering the near-infrared (NIR) and UV-visible regions.
The CRIs coming from these different measurements
are also not consistent with each other. For example,
at v = 4000 cm™', measurements from Arakawa et al.
(1997) of the real part (top figure) of the refractive
index show n(v) = 1.559 while measurements done
by Egan (2012) and Querry (1998) have lower values
of 1.502 and 1.362, respectively. The inconsistencies in
the CRI of kaolinite can be a major obstacle in its
characterization by remote sensing techniques.

The present work describes the experimental and
theoretical procedure allowing the retrieval of a con-
tinuous CRI set for crystalline kaolinite from FIR
(200cm™") up to UV (40,000cm™"). The following
section gives a brief explanation of the experimental
setup being used with the respective results. Some of

the changes since Herbin et al. (2023) will be high-
lighted, specifically the addition of a new spectrometer
breadboard allowing spectral recordings in the FIR
region. Section 3 details the new numerical procedure
as well as the final retrieved set of CRI of kaolinite
and their uncertainties. Finally, Section 4 summarizes
our results and presents perspectives for future works
and applications.

2. Experimental setup

The experimental setup, shown in Figure 2, can be
divided into three main parts: 1- aerosol generation
used for sample resuspension, 2- spectrometers, one
for the IR region while the other for the UV-visible
region, and 3- two particle sizers used to record the
SD of the particles. The setup has already been pre-
sented in previous articles (Deguine et al. 2020;
Herbin et al. 2023; Hubert et al. 2017) and is only
briefly recalled here highlighting some improvements,
especially in the FIR region.

2.1. Aerosol generation

The kaolinite sample is provided by Sigma-Aldrich
(CAS number 1318-74-7). It has a density equal to
2.65g.cm> (Varga 2007). First, we place it in a Petri
dish in an oven of temperature 353 K for at least 12h
to remove water residues at the surface of the par-
ticles. The particles are then introduced into a glass
reactor containing a bar magnet for mechanical agita-
tion of 1500 revolutions.min™' causing the resuspen-
sion of the particles. They are carried away in a
constant flow of 3L.min~' of nitrogen (N,, purity
99.996%) managed by a mass flow controller.
Downstream, a 1L buffer volume is used to achieve a
stable concentration and uniform SD of aerosols,
throughout the full acquisition period. This also
makes it possible to impact large particles which,
otherwise, would have been deposited in the
spectrometers’ cells. Piping connections are as short
and as straight as possible to limit particle losses.
Before extinction measurement, the system is purged
with N, for at least 4h to minimize as much as pos-
sible the absorption bands coming from water vapor
and carbon dioxide in the interferometer and cells.
Using a fixed nitrogen flow rate with an occasional
pulsing of the flow every 5-10s and a controlled vari-
ation of the mechanical agitation, the concentration of
particles remains stable enough for the full acquisition
time where the variability of the concentration during
the experiment is less than 5%.



2.2. Extinction measurements

The resuspended particles pass through the cells of
the spectrometers for extinction spectra recording.
The first cell crossed by the sample is a 10 m multi-
pass cell placed horizontally in the Fourier Transform
InfraRed (FTIR) spectrometer (iS50 from Thermo
Scientific) to minimize particle sedimentation on the
mirror. To cover the FIR region, a new breadboard
has been recently installed with another 10-m multi-
pass cell with polyethylene (PE) windows, a DTGS
detector, and a Solid Substrate beam splitter. To be
able to add this new optical element, modifications to
the original infrared breadboard needed to be made as
well as changes in the aerosol trajectory inside the sys-
tem. Since the CO, and H,O absorption are high in
the FIR region, purging time is increased to 5h before
resuspension to remove the residual traces of these
compounds. The particles then pass through a cell
(1 m-length and 48 mm-diameter) placed in a UV-vis-
ible spectrometer composed of 2 light sources, a deu-
terium lamp and a halogen lamp, emitting from 210
to 400 nm and from 360 to 1500 nm, respectively.
Table 1 shows the best configuration of windows,
beam-splitters, and detectors to get extinction spectra
from 100cm™! up to 50,000 cm~ L. In the infrared and

FTIR spectrometer

UV-vis spectrometer
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UV-visible regions, we were able to collect extinction
measurements with high spectral resolutions of 0.5cm™
and 1nm, respectively. The collection of data takes
180s. The acquisition time is optimized to compensate
for getting enough sensitivity from the spectrometers for
a good signal-to-noise ratio and minimizing the depos-
ition of particles on the mirrors and windows of the
cells. The experimental extinction spectrum of kaolinite
is shown in Figure 3.

Due to the large amount of noise at the begin-
ning of the FIR spectral range as well as at the end
of the UV-visible range, we limit our region of
study between ¥1= 200 and k= 40,000cm .
Moreover, although purging is done to reduce H,O
vapor and CO, molecules, there are still some resi-
dues coming from the sample desorption. The latter
produces spectral features (gaseous absorption lines)
that must be removed in order to not disturb the

CRI retrieval. This procedure is performed by a
Savitzky-Golay smoothing method (Savitzky and
Golay 2002), which reduces the amplitude of high-
frequency signal coming from gaseous residues and
instrumental noise (see the red curve of Figure 3)
and makes it possible to distinguish the main
extinction peaks.

=
\ SMPS
[Filer -~ Fiimter< |\
APS e
00000 ﬂ

_— Aerosol generation

Figure 2. Schematic representation of the experimental setup used. It is composed of an aerosol generation system (blue box),
FTIR and UV-visible spectrometers (green box), an Aerodynamic Particle Sizer (APS) spectrometer and a Scanning Mobility Particle
Sizer (SMPS) made of a Differential Mobility Analyzer (DMA) and a Condensation Particle Counter (CPC) (yellow box).

Table 1. List of detectors, beam-splitters, and windows used in the spectrometers as well as the corre-

sponding spectral range.

Spectral range (cm™") Detector Beam splitter Windows of the cell Spectral resolution
100-650 DTGS Solid substrate Polyethylene 0.5¢cm™
650-4000 MCT KBr BaF, 05cm™
4000-8000 InGaAs CaF, BaF, 0.5cm™
9000-50,000 ccb Quartz 1nm
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Figure 3. Extinction spectrum of kaolinite between 200 and
40,000cm™". The black curve represents the experimental
extinction spectrum while the red curve shows the smoothed
version. The inset shows a zoomed portion between 200 and
4000 cm™" highlighting the region from far infrared to middle
infrared.

The two prominent bands at 473 and 542cm™" are

due to the bending vibrations of Si-O-Al'" and Si-O-
Si groups, respectively (Madejova, Gates, and Petit
2017). Weak bands at 702 and 756cm™" are related to
the perpendicular Si-O vibrations involving the sur-
face hydroxyl layer. The ALLOH bending vibrational
modes at 912 and 937cm™" arise from vibrations of
inner and inner-surface OH groups, respectively. The
modes at 1007 and 1031 cm™" are caused by the anti-
symmetric in-plane Si-O-Si stretching vibrations.
The high-frequency band at 1114cm™" is assigned to
the symmetric stretching Si-O vibrations involving the
basal oxygens. The OH stretching region of kaolinite
shows 4 resolved bands at 3617, 3649, 3668, and
3694cm”'. The 3617cm™' vibrational mode arises
from the vibrational stretching of single “inner”
hydroxyl groups (vop) bonded to octahedral cations
while the others are due to coupled vibrational
stretching of nonequivalent “inner-surface” OH
groups located at the surface of the dioctahedral sheet
of the layers (Madejova, Gates, and Petit 2017). Figure
4 compares the normalized experimental absorbance
obtained by Balan et al. (2001) to our smoothed
extinction measurements. We can notice a good
agreement between our assignment and that of Balan
et al. (2001), whose experimental setup uses a pellet
sample. Nevertheless, although peak positions between
the experiment from Balan et al. (2001) and ours are
consistent, they are not identical. First, it is due to the
fact that the transmission IR spectrum of the kaolinite
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Figure 4. Comparison between the experimental absorbance
spectrum of Balan et al. (2001), our extinction spectrum in the
IR regions. The inset shows a zoomed portion between 850
and 1200cm™" highlighting the peak shifts between the two
datasets.

pellet of Balan et al. (2001) was recorded with a
coarser spectral resolution (2 cm ™). Then, the kaolin-
ite particle size of Balan et al. (2001) is roughly
0.7 pm, much larger than the mean diameter meas-
ured by our experiment, which leads to a systematic
spectral shift.

There are also differences in the intensity ratios
which are explained by the fact that Balan et al
(2001) uses the pellet technique instead of using resus-
pension of particles. Finally, some features in FIR and
MIR (225, 240, 253, 506, and 788cm™') were not
detected by Balan et al. (2001) but were predicted by
their ab initio calculations.

2.3. Size distribution determination

SDs of the particles were measured by an aero-
dynamic particle sizer (APS, TSI 3321) and a scanning
mobility particle sizer (TSI SMPS 3936L75).

The APS’s principle is based on the measurement
of the time of flight of a particle. It measures the SD
for aerodynamic diameters D, between 0.523 and
20 um where D, is the equivalent diameter of a spher-
ical particle that falls in the air at the same speed as
the non-spherical particle being studied. A measured
SD by the APS of the kaolinite sample is represented
by black bins in Figure 5.

The SMPS is used to measure finer particles. It
couples a differential mobility analyzer (TSI DMA
3080) that selects particles based on their electric
mobility, with a condensation particle counter (TSI
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Figure 5. The total concentration measurements with respect
to the aerodynamic diameter recorded by the APS considering
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Figure 6. The total concentration measurements with respect
to the mobility diameter recorded by the SMPS.

CPC 3775) that detects the selected particles. In the
DMA, particles with positive charge move toward the
internal electrode to pass through the exit slot. These
selected particles are then integrated into the CPC at
a 0.3 L.min""' rate where the volume of each particle is
increased by condensed vapors of butanol making
them optically detectable droplets. The SMPS, depend-
ing on the impactor used, records the electrical mobil-
ity diameter D,, of particles varying between 10 and
800nm. The SD measurement of kaolinite by the
SMPS is given in Figure 6.

As part of the CRI retrieval process, we need a SD
associated with the experimental extinction spectrum.
The SD is described by parameters called moments of
distribution which are the total number concentration
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N; (in #.cm™), the geometric standard deviation oy,
and the volume equivalent mean diameter D (in pm).
The log-normal law is a mathematical expression
(Seinfeld and Pandis 2006) that models the SD of
atmospheric aerosols and is presented in Equation (1)
where N is the concentration and D is the diameter of
the particle:

dN N; —(logD-logD) 2
D) = =
n(D) dlog(D) \/2nloga, eXP 2 (logag) 2

(1)

We have recorded two SDs coming from two dif-
ferent devices. To link these two measurements, we
consider the volume equivalent diameter D,,.
Equations (2) and (3) relate the volume equivalent
diameter to the aerodynamic diameter and the mobil-
ity diameter, respectively (DeCarlo et al. 2004).

[ PoxCc(D) :

Dve - Da (m) (2)
B C.(Dve)

Do (m) ¥

where p, and p are the densities (in g.cm™>) of water
and the particle, respectively, y is the shape factor of
the particle while Cc represents the Cunningham slip
factor of either the volume equivalent diameter, the
aerodynamic diameter or the mobility diameter (Kim
et al. 2005). By using a similar method as used by
Herbin et al. (2023) and described by Khlystov,
Stanier, and Pandis (2004), which consists of deter-
mining y by fitting Equation (4) from the experimen-
tal data D,, from the SMPS and D, from the APS in
the area where the diameters overlap, we can estimate
the shape factor to y 3,

Cc(Dqa)py

D,, =D,
* Ce(Dp)p

(4)

This shape factor value corresponds to very irregu-
lar particles, which is consistent with the typical shape
of kaolinite generally described by an overall hex-
agonal appearance (Tunega and Zaoui 2020).

The drop in the counting efficiency of APS for
sizes lower than 1pm, the fact that the y factor is
only roughly estimated, and the particle losses in the
setup, specifically the fine particles lost by diffusion,
especially on spectrometer mirrors and windows, as
well as coarse particles lost by sedimentation, are the
main sources of uncertainties in the determination of
the moments of distributions. Therefore, the latter
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have to be optimized before being able to use them
for the CRI retrieval process. The moments of distri-
bution are adjusted using a least square fit method
with respect to the experimental extinction spectrum
in the UV region. This operation is done in the spec-
tral range between 4000 and 40,000 cm™" where the
extinction spectrum is mainly governed by the real
part of the CRI having monotonic behavior and rela-
tively independent of the experimental method used
(pellets, bulk, or suspended particles). The optimiza-
tion method is similar to that of Mogili et al. (2007).
This method needs a priori values of the SD parame-
ters. For that, we used the values obtained from the
log-normal fit of the experimental measurements from
SMPS and APS. A literature set of optical constants in
this spectral range can also be useful for this oper-
ation. According to Arakawa et al. (1997), the CRIs
obtained from Egan (2012) are low due to the fact
that they were not able to collect a large fraction of
scattered light. Therefore, the Arakawa et al. (1997)
dataset is chosen for the optimization procedure.

The latter uses Mie theory to simulate an extinction
spectrum using the a priori SD parameters and the lit-
erature complex refractive indices (CRI) in an iterative
process. The new optimized moments of distribution
are N, = 1.504 x 10° cm™, D = 0.118 um; 0, =
2.340. To verify the retrieved SD parameters, a spec-
trum is also simulated within the framework of geo-
metric optics since at high wavenumbers geometric
optics depends mainly on the particle SD parameters
(Nussenzveig and Wiscombe 1980). As shown in
Figure 7, the consistency between Mie theory simula-
tion, geometric optics calculation, and the raw experi-
mental data around 40,000cm~! validate the
optimized SD parameters.

3. CRI retrieval

The numerical procedure carried out to retrieve CRIs
has been thoroughly explained by Herbin et al
(2017). Modifications to the numerical formulations
have been introduced since then, such as the use of
logarithmic calculations, changing the a priori set, and
enhancing the convergence criteria to refine the
retrieved data. The new numerical protocol is sum-
marized in the flowchart of Figure 8. The following
section will briefly recapture the main points since
Herbin et al. (2017) as well as highlight the changes
and improvements and the
obtained.

made final results
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Figure 7. Comparison of the raw experimental data from 4000
to 40,000cm™" (in black) to the Mie theory simulation (in red)
and the simulation from the geometric optics calculations (in
blue).

3.1. CRI retrieval using the optimal estimation
method

Even if the extinction spectrum is well obtained and
the SD parameters are optimized to the best possible
values, it’s difficult to retrieve two unknowns (n and
k) at each wavenumber. For this reason, we use the
optimal estimation method (OEM) (Rodgers 2000)
and the single subtractive Kramers-Kronig (SSKK)
relation expressed in Equation (5) which adds a cor-
relation between n and «.

=2 _ 5 2

) (s = 20

Pro Vi) g ()
0 (7 -7) (v -72)

In the former equation, Vv, represents the wave-
number of the anchor point for which the real part of
the refractive index, n(7v,), is fixed and P is the prin-
cipal Cauchy value of the integral. The goal of OEM
is to obtain the best estimation %, of the state vector
x composed of n(v) and k(v) values we wish to
determine, by regularizing the retrieval with a priori
information x, about the variables as well as their a
priori variability S,. The iterative process of the OEM
has been recently refined since Herbin et al. (2023) by
using the logarithmic formulation instead of linear.
This is done because logarithmic scale proved to be
better for inversion processes involving a wide-reach-
ing range in the retrieved parameters and between the
measurements and the numerical values of the state
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Figure 8. Flowchart of the algorithm used for the CRI retrieval.

vector. This refined version of the iterative process is
given in Equation (6).

+ (KISZh+8;1) KIS
Inx,)]  (6)

In Equation (6), y represents the experimentally
measured extinction spectrum, F is the forward
model, i.e. scattering theory, K = 5){;% is the Jacobian
matrix and K is its transpose. S, is estimated from
the difference between the experimental extinction
and the simulated one using x, (Herbin et al. 2023).
S. is a variance-covariance matrix equal to S, +
KbSbeT that estimates the average noise from the
instrument S,, and the errors S, relating to the non-
retrieved SD parameters b. In this case, K, :% is
the Jacobian matrix corresponding to the sensitivity of
the forward model with respect to b.

The first step in the retrieval process is finding a
priori vector x,. Previously, the a priori set for OEM
was formed by x(v) and n(v) values, however, this set
has been recently updated to include A;(v) and A, (V)
values, the imaginary and real part of the spectrum,
respectively, instead for an optimized retrieval. To do
so we use the Rayleigh approximation in the IR
region. Assuming a dispersed homogeneous medium,
A;(V) can be represented as:

= Inx,

X [y - F(JAC,) + K,‘(lf’l)AC,' -

Inxi

A7) = (7)

onufrL
fv is the volume fraction of the particles and L is the
length of the optical path in cm. The Rayleigh theory
algorithm calculates the value of A;(v) and then the

;.| Simootring, Seeasir ., Smodp ‘

SSKK integration calculates n(v) at each wavenumber.
Since we use SSKK in the retrieval methodology of
CRI, a constant spectral grid is needed. Therefore,
before applying the Rayleigh approximation, to hom-
ogenize, we interpolate with the same spectral grid of
lcm™'. An anchor point corresponding to the real
component of the refractive index at a specific wave-
number is needed. For our purpose, we have chosen
the anchor point n(vs) =1.559 at wavenumber v, =
5000 cm ™" since the real part n(v) has a monotonic
variability in this region and the sensitivity of the
measurement is maximum for n(v) and minimum for
k(v) (Herbin et al. 2017). Since Rayleigh is only a
good approximation in the IR region, the iterative
process is limited between 200cm™" and the wave-
number corresponding to the minimum extinction
which in our case is 1293cm™". To avoid discontinu-
ity at the ends of the spectral ranges, extrapolation of
A;(v) is made using the following relations (Herbin
et al. 2017):

Av) = A"(V’vi)l” (0<v <) (8)
AF) = Ai(v th i3
v )

(4 < 7 < Pmx = 50,000 cm™")

In the NIR region, since there are both absorption
and scattering, Rayleigh’s theory is thus not able to
reproduce the extinction band of kaolinite. Therefore,
between 3500 and 3800cm ™', an absorption spectrum
from literature is needed to have a priori values of
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A;(7). The absorption spectra from Balan et al. (2001)
is used to extract the imaginary part of the refractive
index in that region of the spectrum.

The Rayleigh algorithm uses an iterative process to
calculate the refractive index at each iteration over the
full spectral range. It uses the a priori values x, made
up of A;(v) and A,(v) in the iterative process where
A,(¥) is an analytic function and can be rewritten as a
KK-like relationship:

AW ~r1-— 2
2 + n(va)
2 o2) JA,(V) _
+2(1/ va)PJ i v i v
T VI (V/Z—VZ)(V/Z—VQ )
(10)

After having an initial first guess of the real and
imaginary part of the spectrum, an inversion process
is used to optimize these a priori values (Herbin et al.
2017). The dielectric function’s real €,(v) and imagin-
ary parts €;(v) are used to calculate the real and
imaginary parts of the refractive index:

o 30-A0)
= a@raer S MY
&) = 34:(7) (12)

(1-A,)" + A

Knowing that €,(¥) = n(¥)’ —k(¥)* and &(¥) =
2n(v)k(v), the real and imaginary part of the complex
refractive index are calculated by:

o) — [(EO + @) + &) 13

ol

[\

o

2 _
k() = (14)

Using n(v),k(v), and Mie theory, we can simulate
an extinction spectrum. The values of A;(V) are then
adjusted during an iterative loop that minimizes the
difference between the experimental extinction found
in the laboratory and the simulated one. This differ-
ence is then related to the difference in A;(¥) values
that is then added to the next value of A;(V).

_ (ExperimentalExtinction(v) — SimulatedExtinction (7))
AA!(V)] = 6 _fL
fi27
(15)

Ai(V)jH = Ai@)j + AA:‘(V)]' (16)

After each new value of A;(¥), a set of values of
the real and imaginary parts of the refractive index is

calculated to simulate a new extinction spectrum. The
iterative process is conditioned to stop based on a
limit value on the RMS as well as on its deviations:

RMS; — RMS;,

Gapl;yy <
P =TT R,

(17)

or
RMS;_; — RMSj,
RMS;_,

Gap2j;1 < (18)

This is done to ensure that at each iteration, the
RMS is improving and that we are in the global min-
imum instead of a local minimum. For our purposes,
we conditioned the algorithm to stop when Gapl and
Gap2 decreased from the empirical values 0.02 and
0.04 respectively. These values have been chosen as a
compromise between having satisfactory comparison
between simulated and experimental extinction and
fair calculation time of the algorithm.

Figure 9 shows the comparison of the simulated
extinction using Rayleigh theory with the experimental
extinction in the infrared region. After the iterative
process, a set of x(v) and n (v) values is capable of
reproducing a satisfactory simulated extinction spec-
trum compared to the experimental one having a root
mean square (RMS) value equal to 9.25 10~* in the IR
region which is below the estimated measurement
noise. This validates the a priori x, which will be used
in Equation (6).

As stated previously, for OEM, other than a priori
values of the CRI we also need a priori matrix S,.
This matrix is assumed to be a diagonal matrix where
its diagonal elements are defined by Equation (19)
(Herbin, Labonnote, and Dubuisson 2013).

Perror
X 19
100 (19)

0,4, is the standard deviation in the Gaussian statistic
formalism and P, is the error of the a priori values
given by Rayleigh and is fixed at 2% in this study. We
have also chosen the a priori uncertainty on the size
parameters S, to be 1% for each SD parameter. At the
end of the iterative process of OEM, we obtain a set
of CRI from which a simulated spectrum is calculated
using Mie theory and compared to the experimental
one in Figure 10. The RMS between the simulated
and experimental spectra is equal to 0.173, equivalent
to 2.8%, which is in the same order of magnitude as
the mean experimental noise over the whole spectral
range.

Figure 11 compares the newly retrieved set to some
of the literature ones. As can be seen, the newly
retrieved set (in black) coming from this work is the

_ 2 : _
Sajii = 074 With 04 = x4
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Figure 9. Comparison of the smoothed experimental extinc-
tion spectrum (in black) with the simulated extinction spec-
trum using the CRI retrieved after the Rayleigh theory iterative
process between 200 and 4000 cm™".
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Figure 10. Comparison between the experimental extinction
spectrum (in black) and the one simulated by the retrieved CRI
using OEM (in red). The inset shows a zoomed portion
between 216 and 4000cm™" highlighting the region from Far
Infrared to Mid Infrared.
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Figure 11. Literature values of the real part (top) and the imaginary part (bottom) of complex refractive indices of kaolinite
as well as the newly retrieved CRIs during this study for two spectral ranges. On the left, the spectral range between 750 and
1250cm™" is shown to highlight the different CRI features in the TIR region. On the right, the spectral range between 1500 and
4500 cm™" is used to show the region where previous literature datasets have a lot of inconsistencies with one another.
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Figure 12. The real part n (top) and the imaginary part x
(bottom) of the refractive index of kaolinite. The grey shading
represents the total uncertainties on the retrieved parameters.
The insets highlight a zoomed portion between 800 and
1200cm™" where both Roush, Pollack, and Orenberg (1991)
and Querry (1998) have CRI data.

first one to give continuous and coherent CRI values
from FIR up to UV. Indeed, the previous literature
values of kaolinite CRI are each over limited spectral
ranges. Moreover, as can be seen by the right section
of the figure, the previous datasets are not consistent
with each other. For example, at ¥ = 4,000cm™",
measurements from Arakawa et al. (1997) of the real
part (top right figure) of the refractive index show
n(v) = 1.559 while measurements done by Egan
(2012) and Querry (1998) have lower values of 1.502
and 1.362, respectively. In both the imaginary and real
parts, we can notice clear intensity variations. This is
specifically evident when comparing our measure-
ments to the ones of Querry (1998) (right figure). As
for the left section of the graph, we notice that we
have good consistency in the intensity, however; we

observe a strong shift between literature values of
both k() and n(v) and the newly retrieved set.

3.2. Uncertainties

The advantages of the OEM are that it restores the
parameters needed to be retrieved, in our case the
CRI, as well as provides a way for characterizing them
by a full error budget represented by the total error
variance matrix. To properly evaluate the accuracy of
the results one must consider the error sources and
quantify their impact on these results. The total error
on the retrieved CRIs is given by the total error
covariance matrix:

STotal = Ssmoothing + Smeasurement + Smodparam (20)

The first term includes the error due to smoothing
Ssmoothing = (A-1)S,(A - I)T that considers the sensi-
tivity of the measurements and the a priori variability
to the retrieved parameters n(v) and k(7). In this
case, I is the identity matrix and A = % are the aver-
aging kernels that measure the sensitivity of the
retrieved state vector with respect to the true state.
The second term is the measurement
Smeasurement = GSmGT corresponding to the spectral
noise where G :g—j}i is the gain matrix representing
the sensitivity of the retrieved state vector to the
measurement. The final term is the model parameters
error  Spodparam = GK;,Sb(GKb)T and it represents the
uncertainties of the non-retrieved SD parameters.
Figure 12 illustrates the retrieved CRIs of kaolinite (in
black line) as well as their total uncertainties St at
each wavenumber represented by the shaded area sur-
rounding the retrieved values of n(v) and x(¥).

The total uncertainty of n(v) ranges between 0.5%
and 4% while that of x(v) is between 0.003% and
11.6%. The average total uncertainties for the real and
imaginary parts of the refractive indices are 1.6% and
0.6%, respectively. Most of the uncertainty for the real
part of the refractive indices comes from the uncer-
tainty in the SD parameters. It attributes to 99% of
the total uncertainty on n(v). As for the imaginary
part, the uncertainties coming from the smoothing
play the largest part in the total uncertainty, attribut-
ing to 70% while the uncertainties due to the forward
model of the SD and the spectral noise attribute to
26% and 4%, respectively.

€rror

4. Conclusion and perspective

Having reliable CRI values for particles in suspension
rather than using pellet or bulk techniques is of major



interest in many fields, specifically in remote sensing.
For instance, current and future infrared space mis-
sions such as AIRS, IASI, IRS-MTG, or IASI-NG
benefit from having CRI datasets for the retrieval of
aerosol chemical composition and microphysical
parameters. In this context, the future mission
FORUM will be the first to perform measurements in
the FIR, spectral domain for which the CRIs are very
poorly known. In this study, we have improved our
experimental setup as well as our numerical algorithm
enabling us to retrieve homogenous CRI of aerosols
from FIR (200cm™) to UV (40,000cm™") with a
spectral resolution of 0.5cm~'. For Kaolinite, the
mean total uncertainty for the real and imaginary
parts of the retrieved refractive indices is 1.6% and
0.6%, respectively. Moreover, the difference between
measured and simulated extinction spectra is esti-
mated at 2.8% which is lower than the error coming
from the spectral noise approximated at 4%. The
retrieved CRIs of kaolinite as well as the uncertainties
at each wavenumber are available on request or online
in the supplementary information. The work in pro-
gress is dedicated to improving the experimental
device used for FIR measurements in order to
enhance the signal-to-noise ratio and sensitivity. We
aim to extend our studies to other types of aerosols.
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