Designing additional GHGs observations network over Korea using Lagrangian inversion model

Samuel Takele Kenea¹, Sangwon Joo¹, Shanlan Li¹, Sumin Kim¹, Young-SuK Oh¹, Daegeun Shin¹, Soojeong Lee¹, Lev, D. Labzovskii², Sanghun Park³

- 1. Climate Research Department, National Institute of Meteorological Sciences (NIMS), 33, Seohobuk-ro, Seogwipo-si 63568, Jeju-do, Korea
- 2. R&D Satellite and Observations Group, Royal Netherlands Meteorological Institute (KNMI), 3731GA De Bilt, The Netherlands
- 3. Laboratory for Atmospheric Modeling Research, Yonsei University, Seoul, Korea

Contact: samueltakele81@gmail.com

- Uncertainty in anthropogenic emissions is a fundamental science question
- The aim of this work is to propose new additional GHGs (CO2) candidate sites, which will enable us to improve GHGs emissions at fine spatiotemporal scales over Korea.

- We need to have
- simulated footprints (e.g., KIM-STILT model), together with Bayesian inverse modelling framework
- Meteorological deriving fields are obtained from KIM (*Korean Integrated Model*)
- o prior and true GHGs emissions data at high spatiotemporal resolution,
- o defined model-data mismatch errors, priori flux uncertainties, and error correlations

- Platform description
 - In situ surface (AMY, JGS, ULD)
 - Tall tower (LWT, BST)
 - Mobile (Vessel, Aircraft)
 - Remote observation (FTS, mobile FTS)
 - Low cost sensors are under developing stage
- Measurement details
 - $CO_2/CH_4/N_2O/SF_6$
- Data Visualization
 - Observation data
 - Model data

GHG monitoring network in Korea

□ Korea CO₂ emission sectors based on EDGAR data

Major contributions

- i. Main Activity Electricity and Heat Production 48.2%
- ii. Road Transportation no resuspension 14%
- iii. Manufacturing Industries and Construction 11%
- iv. Other sectors 8.5%

Solid Fuels and Other Energy Industries

Footprints

- **STILT** (*Stochastic Time Inverted Lagrangian Transport,* Lin et al. 2003)
 - horizontal resolution 0.1° x 0.1° lat-lon
 - Temporal resolution 1-hour
 - Number of particle 500
 - Backward time 3 days
- The footprint quantifies the influence of upwind surface fluxes on the concentrations measured at the receptor and is computed by counting the number of particles in surface-influenced volume and the time spent in that volume.

Figure 1. KIM-STILT aggregated footprints of 10 sites located in Korea, December 2020 (2-7 UTC).

Table 1. List of GHG observation sites including existing and new candidate sites over Korea.

- □ KIM (Korean Integrated Model, Hong et al., 2018) for meteorological data
 - horizontal resolution- 0.125° x 0.125° lat-lon
 - Temporal resolution 3-hour
 - Vertical levels 31

N <u>o</u>	Site	Lat. (°N), lon. (°E),	STILT height (m.a.g.l)
1	Anmyeondo (AMY)	36.538576, 126.330071	40
2	Gosan (JGS)	33.29382, 126.16283	12
3	Ulleungdo (ULD)	37.48, 130.90	10
4	Lotte World Tower (LWT)	37.5126, 127.1025	550
5	Boseong Tower (BST)	34.76, 127.21	140
6	Ulsan (ULS)	35.52636, 129.293686	20
7	Busan (BSN)	35.1573, 129.1797	40
8	Jeonju (JOJ)	35.8026, 127.1182	40
9	Daejeon (DJN)	36.3359, 127.4576	40
10	Jinju (JNJ)	35.16425, 128.10732	40

Posterior emission estimates are optimized through the minimization of the cost function

$$L_{s} = \frac{1}{2}(z - Hs)^{T}R^{-1}(z - Hs) + \frac{1}{2}(s - s_{p})^{T}Q^{-1}(s - s_{p})$$
(1)
$$z = Hs_{truth} + \epsilon$$
(2)

z – observed enhancements, s_p –prior emissions, s – true emissions,

R- covariance of model-mismatch error, Q-covariance of prior emissions, \in -error

The posterior best estimate of emissions, ŝ, is expressed as:

$$\hat{s} = s_p + (HQ)^T (HQH^T + R)^{-1} (z - Hs_p)$$
 (3)

Posterior uncertainty covariance matrix $V_{\hat{s}}$, is given as:

$$V_{\hat{s}} = Q - (HQ)^T (HQH^T + R)^{-1} (HQ)$$
(4)

\Box CO₂ emissions

o EDGAR v6

- horizontal resolution 0.1° x 0.1° lat-lon
- Temporal resolution monthly
- \circ the latest available data is December 2018
- Constructed as a prior emission
- Diurnal scaling factor (from Nassar Emissions Scale Factors) is applied

• GRACE2021 (*Dou et al. 2023*)

- horizontal resolution 0.1° x 0.1° lat-lon
- Temporal resolution daily
- near-real-time daily national CO₂ emissions estimates (Carbon monitor), multi-source spatial activity data emissions
- Satellite NO₂ data for time variations
- Diurnal scaling factor (from Nassar Emissions Scale Factors) is applied
- Constructed as a true emission

Figure 2. CO_2 emissions for December 2020. Unit for emission is μ mol m⁻² s⁻¹. **Prior error covariance** (Q) describes both variance in prior emissions uncertainty and spatial and temporal correlation of these uncertainties. $Q = I_{\sigma}(D \otimes E)I_{\sigma}$ Exponential decay equations

 $E = \exp(-\frac{x_s}{l_s}) \qquad D = \exp(-\frac{x_\tau}{l_\tau})$

• horizontal length scale = 45 km, temporal length scale = 5 days

Model-data mismatch (R)

- R typically reflect inaccuracies in the transport, prior fluxes, and measurements
- Vertical mixing layer height error is approximated of 7% mean enhancement adopted from Gerbig et al. (2008), representing error for afternoon time period only.
- *Horizontal wind error* is assumed to be 35% of mean enhancement (Kunik et al., 2019), with a correlation time scale of 2.8 hours (Mallia et al., 2017)
- *uncertainty in STILT based on the finite number of particles* released is considered 0.1 ppm (Mallia et al., 2017; Kunik et al., 2019)
- Error introduced by aggregating spatially and temporally heterogeneous fluxes into one homogeneous grid cell and timesteps (followed Kunik et al. (2019) approach)

Uncertainty reduction

- Prior uncertainty from absolute difference of prior minus true emission
- The assigned model-mismatch values are ranging between
 2.44 ppm and 3.28 ppm
- ULD site only does not have influence on the uncertainty reduction

Uncertainty reduction (%) =
$$\left(1 - \frac{\sigma_{predicted}}{\sigma_{prior}}\right) x \ 100$$

- ✓ Daytime (2-7 UTC) uncertainty reduction =

Reduced $\chi^2 = 0.926$

Figure 3. Prior uncertainty and uncertainty reduction maps. Unit for emission is μ mol m⁻² s⁻¹.

Undergoing work: *sensitivity analysis and method validation*

- Influence of spatial and temporal correlation length
- Ranking the site influence in terms of uncertainty reduction
- Investigate the impact of inlet heights, backward time of the trajectory

Thank you!