Unprecedented Atmospheric NH₃ Concentrations Detected in the High Arctic from the 2017 Canadian Wildfires

E. Lutsch¹, T. Wizenberg¹, K. Strong¹, D.B.A. Jones¹, I. Ortega², J.W. Hannigan², E. Dammers³, M.W. Shephard³, E. Morris⁴, K. Murphy⁴, M. Evans⁴, M. Parrington⁵, S. Whitburn⁶, M. Van Damme⁶, L. Clarisse⁶, P.-F. Coheur⁶, C. Clerbaux^{6,7}, B. Croft⁸, R.V. Martin⁸, J.R. Pierce⁹, J.A. Fisher¹⁰

¹Department of Physics, University of Toronto, Toronto, ON, Canada
 ²National Center for Atmospheric Research, Boulder, CO, United States
 ³Air Quality Division, Environment and Climate Change Canada, Toronto, ON, Canada
 ⁴Department of Chemistry, University of York, York, United Kingdom
 ⁵European Center for Medium-Range Weather Forecasts, Reading, United Kingdom
 ⁶Service de Chimie Quantique et Photophysique,
 Spectroscopie de l'Atmosphere, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
 ⁷LATMOS/IPSL, Sorbonne Universités, UVSQ, CNRS, Paris, France
 ⁸Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada
 ⁹Colorado State University, Department of Atmospheric Science, Fort Collins, CO, USA
 ¹⁰Centre for Atmospheric, Chemistry, University of Wollongong, Wollongong, Mustralia

Atmospheric NH₃

 NH_3 is mainly emitted from agricultural practices; biomass burning is a significant source (*Bouwman et al.*, 1997, 2012)

 NH_3 is an important form of reactive nitrogen:

- Reacts rapidly with acidic gases to form aerosols (Aneja et al., 2007)
- Aerosol formation affects air quality and climate (Sutton et al., 2011)
- Contributes to eutrophication and acidification of soil and precipitation (*Erisman et al., 2007*)

NH_3 in the Arctic

- Short lifetime (<24hr) prevents long-range transport from lower latitudes
- Primary source of Arctic NH₃ from seabird guano (*Blackall et al., 2009, Wentworth et al., 2016*)
- Arctic tundra NH₃ emissions (*Croft et al., 2019, Murphy et al., 2019*)
- Indirect radiative cooling from seabird NH₃ emissions (*Croft et al., 2016*)

Photo Credit: The Canadian Press/Andrew Vaughan

NH_3 Measurements in the Arctic

First long-term NH₃ measurements using FTIR at Eureka, Nunavut (Lutsch et al., 2016)

- Enhancements detected from 2014 Canadian Wildfires
- $\bullet~NH_3$ lifetime of ${\sim}2$ days in a wildfire smoke plume

Ground-based Measurements

FTIR Sites

Eureka, Canada (80.05°N, 86.42°W)

- Located at the Polar Environment Atmospheric Research Laboratory (PEARL)
- In operation from 2006-Present

Thule, Greenland (76.53°N, 68.74°W)

- Located at the Thule Air Base (TAB)
- In operation from 1999-Present

Separated by ${\sim}500 \text{km}$

MODIS burned areas shown in red for Aug. 10-24, 2017

Retrieved Species

CO, HCN and C_2H_6 retrieved using the Network for Detection of Atmospheric Composition Change (NDACC) Infrared Working Group (IRWG) recommendations

Species	Name	Sources	Sinks	Lifetimes
со	Carbon Monoxide	BB, transport, steel industry, methane and VOC oxidation	reaction with OH	30 days
HCN	Hydrogen Cyanide	BB, industry, fungi and plant emission	reaction with OH and ocean uptake	75 days
C_2H_6	Ethane	BB, biofuel use, oil and gas extraction	reaction with OH	45 days
NH ₃	Ammonia	BB, agriculture, seabirds, natural emission	reaction with acidic gases, dry and wet deposition	$<\!\!1$ day
E. Lutsch (UofT)		Joint NDACC IRWG/TCCON Meeting, Wanaka, NZ		May 22, 2019

Time Series: NH₃

Time Series: CO

Time Series: HCN

Time Series: C₂H₆

Trace Gas Correlations

From FTIR measurements:

$$\mathsf{EnhR}_{\mathsf{X}} = \mathsf{slope}\left(rac{[\mathsf{X}]}{[\mathsf{CO}]}
ight)$$

- EnhR enhancement ratio
- [X] total column amount
- Pair measurement of X with nearest CO measurement within 1 hr
- Apply weighted least-squares fitting (York et al., 2004)

Enhancement Ratio

- Dependent on fuel type and burning phase of wildfire
- Also influenced by aging of the smoke plume during transport

(1)

Enhancement Ratios: HCN and C₂H₆

E. Lutsch (UofT)

Joint NDACC IRWG/TCCON Meeting, Wanaka, NZ

Enhancement Ratios: NH₃

Eureka NH₃

• No correlation with CO; concentration highly variable with time

E. Lutsch (UofT)

FLEXPART: August 17, 2017

(a) Eureka NH₃:CO on Aug. 17, 2017

(b) FLEXPART surface sensitivity for 7 days backwards in time with MODIS burned areas in red

FI EXPART

FLEXPART: August 19, 2017

(a) Eureka NH₃:CO on Aug. 19, 2017

(b) FLEXPART surface sensitivity for 7 days backwards in time with MODIS burned areas in red

FLEXPART: August 20, 2017

(a) Eureka NH₃:CO on Aug. 19, 2017

(b) FLEXPART surface sensitivity for 7 days backwards in time with MODIS burned areas in red

GEOS-Chem Chemical Transport Model (v11-01)

Simulation Scenarios (with anthropogenic emissions)

- Wildfire emissions only
- Seabird-colony emissions only
- Wildfire and seabird-colony emissions

Model Inputs

- **GEOS-FP** meteorological fields at $2^{\circ} \times 2.5^{\circ}$ horizontal resolution
- GFAS biomass burning emissions (Kaiser et al., 2012)
 - $\bullet\,$ Daily emissions at $0.1^\circ\,\times\,0.1^\circ\,$ resolution
- Seabird-colony NH₃ emissions

(Riddick et al., 2012, Wentworth et al., 2016, Croft et al., 2016)

 $\bullet\,$ Monthly emissions at 0.25 $^\circ\,\times$ 0.25 $^\circ\,$ resolution

GEOS-Chem CO

- Seabird-colony NH₃ has no influence on CO
- GEOS-Chem wildfire CO underestimated at Eureka, good agreement at Thule
- CO total columns enhanced at both sites due to wildfire emissions

GEOS-Chem NH₃

- $\bullet\,$ GEOS-Chem wildfire NH_3 underestimated at both sites
- \bullet Seabird-colony NH_3 has a minor influence at Eureka
- \bullet Inclusion of seabird-colony NH_3 emissions improves agreement at Thule

GEOS-Chem vs. IASI CO (August 15, 2017)

- IASI-A CO gridded onto GEOS-Chem horizontal grid and daily averaged
- Transported CO plume underestimated in GEOS-Chem

GEOS-Chem vs. IASI NH₃ (August 15, 2017)

- IASI-A NH₃ gridded onto GEOS-Chem horizontal grid and daily averaged
- $\bullet~$ GEOS-Chem NH_3 underestimated in comparison to IASI-A

GEOS-Chem Total Column NH₃

- Total column NH₃ spatially averaged during fire-affected period from Aug. 15-23, 2017
- Wildfire total column NH₃ exceeds background contribution from seabird colonies
- \bullet Mean wildfire NH_3 of ${\sim}7.5{\times}10^{14}$ molec/cm^2 in Canadian Archipelago

E. Lutsch (UofT)

Wildfire NH₃ Influence

GEOS-Chem Surface-layer NH₃

- Surface-layer NH_3 spatially averaged during fire-affected period from Aug. 15-23, 2017
- $\bullet\,$ Seabird-colony NH_3 predominates near colonies in N.W. Greenland
- Wildfire NH₃ comparable to seabird-colony NH₃ in Canadian Archipelago (\sim 0.07 ppbv)

E. Lutsch (UofT)

Conclusions

2017 Canadian Wildfires

- $\bullet\,$ Greatest NH_3 enhancements observed in Eureka and Thule time series
- NH₃ concentrations more variable at Eureka than Thule
 - Possible plume aging and influence of multiple fire sources
 - Variable source sensitivity observed at Eureka from FLEXPART

GEOS-Chem

- Transported wildfire emissions underestimated in comparison to FTIR and IASI:
 - Underestimation of wildfire emissions; emitted from boundary layer, no injection heights
 - Plume diffusion in the model (*Eastham et al., 2017*)
 - $\bullet~$ Loss of NH_3 due to chemical processing, dry and wet deposition
- \bullet Wildfire NH_3 comparable to seabird-colony NH_3 in the Canadian Archipelago
 - Mean surface-layer concentration of 0.07 ppbv for both wildfires and seabird colonies
- The 2017 Canadian wildfires were a considerable episodic NH₃ source to the high Arctic

Acknowledgements

This work was supported by the Canadian Space Agency (CAFTON and AVATARS) and NSERC (PAHA). CANDAC and PEARL are supported by: ARIF, AIF/NSRIT, CFCAS, CFI, CSA, ECCC, GOC-IPY, INAC,

NSERC, NSTP, OIT, ORF, PCSP, SEARCH Logistical and operational support at Eureka:

- CANDAC/PEARL PI James R. Drummond
- PEARL site manager Pierre Fogal
- CANDAC data manager Yan Tsehtik
- CANDAC operators
- Team at the ECCC Weather Station

Canadian Arctic ACE Validation Campaigns supported by:

- CSA, ECCC, NSERC, and NSTP
- PI Kaley A. Walker

NCAR is sponsored by the US NSF. The NCAR FTS at Thule is supported under contract by NASA. We wish to thank DMI for support at Thule.

E. Lutsch (UofT)