Ozone seasonal evolution and photochemical production regime in polluted troposphere in eastern China derived from high resolution FTS observations

Cheng Liu^{1, 2)}, Youwen Sun²⁾, Mathias Palm³⁾, Corinne Vigouroux⁴⁾, Justus Notholt³⁾, Martine De Mazi ère⁴⁾ 1 University of Science and Technology of China, Hefei, 230026, China 2 Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, China 3 University of Bremen, Institute of Environmental Physics, P. O. Box 330440, 28334 Bremen, Germany 4 Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium Correspondence email: chliu81@ustc.edu.cn

Site and Instrument Description

Site descriptions:

Located in an island in the western suburbs of Hefei city (the capital

of Anhui province) in central-eastern China.

Adjacent to a lake with a longitude of 117° 10'E, latitude of **31°** 54'N and altitude of 30m.

Instruments descriptions:

Consists of a FTS spectrometer IFS 125HR and a solar tracker. Both of them are purchased from Bruker Company.

The MIR spectra are recorded over a wide spectral range (about 600 – 4500 cm⁻¹) with a spectral resolution of 0.005cm⁻¹. The instrument is equipped with a KBr beam splitter & a MCT detector for O₃ and a KBr beam splitter & an InSb detector for other gases, and it has seven optical filters to avoid detector non-linearity.

Methodology

Retrieval strategy:

The SFIT4 (version 0.9.4.4) software based on

optimal estimation algorithm is used in the profile retrieval.

Tropospheric O₃, CO and HCHO columns derived from FTS retrievals via integration over ground to **12km.** Tropospheric NO₂ columns deduced from overpass OMI observations.

Evolution and production regime:

The back trajectory cluster analysis tool HYSPLIT is used to determine the relative contribution ratio to the observed O₃ level.

The sensitivity of ozone production (PO3) relative to meteorological parameters, CO, HCHO, and NO₂ changes are used to determine O3 production regime.

Results

The tropospheric O_3 roughly increases over time at the first half year and reaches the maximum in June, and then it decreases over time at the second half year.

Air pollutions in megacities in central-southern China, northwest China, and the Yangtze River Delta area in eastern China, dominates the contributions, while the contributions from the other two key pollution areas, i.e., Beijing-Tianjin-Hebei in north China and Pearl River Delta in south China, are very small. **The PO3 is mainly NO, limited in summer and mainly VOC or** mix VOC-NO_x limited in winter. NO_x, mix VOC-NO_x, and VOC limited PO3 accounts for 60.1%, 28.7%, and 11%, respectively.

Sun & Liu et al., Atmos. Chem. Phys., 2018

School of Earth and Space Sciences, University of Science and Technology of China Address: 96 Jinzhai Road, Hefei, Anhui, China; Area Code:230026 Tel.:+86 18326679137; Fax:+86-0551-6360 0892

