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Abstract Transport of carbonyl sulfide (OCS) from the troposphere to the stratosphere contributes sulfur to
the stratospheric aerosol layer, which reflects incoming short-wave solar radiation, cooling the climate system.
Previous analyses of OCS observations have shown no significant trend, suggesting that OCS is unlikely to be a
major contributor to the reported increases in stratospheric aerosol loading and indicating a balanced OCS
budget. Here we present analyses of ground-based Fourier transform spectrometer measurements of OCS at
three Southern Hemisphere sites spanning 34.45°S to 77.80°S. At all three sites statistically significant positive
trends are seen from 2001 to 2014 with an observed overall trend in total column OCS at Wollongong of
0.73 £0.03%/yr, at Lauder of 0.43 +0.02%/yr, and at Arrival Heights of 0.45 + 0.05%/yr. These observed trends
in OCS imply that the OCS budget is not balanced and could contribute to constraints on current estimates
of sources and sinks.

1. Introduction

Carbonyl sulfide (OCS) is the longest-lived reduced sulfur gas in the atmosphere. The primary source of OCS is
the ocean, which is both a direct source (through OCS emission) and an indirect source (due to oxidation of
carbon disulfide, CS,, and dimethyl sulfide) [Kettle et al., 2002]. Other natural sources of OCS include volcanic
outgassing and direct fluxes from wetland regions [Kettle et al., 2002; Kuai et al., 2014]. The removal of OCS
from the atmosphere is dominated by soil and vegetation uptake, with minor contributions from reactions
with the hydroxyl radical [Kettle et al., 2002]. Small anthropogenic sources of OCS are coal combustion, bio-
mass burning, and aluminum production [Watts, 2000]. A dominant indirect source results from CS, emis-
sions from the rayon industry [Campbell et al., 2015]. With a tropospheric lifetime of ~2-7 years [Blake et al.,
20041, OCS is sufficiently long-lived in the troposphere that it is transported into the stratosphere where it
is photooxidized to form sulfate particles [Sheng et al., 2015]. Previous studies suggested that OCS is a domi-
nant contributor to the stratospheric aerosol layer during volcanically quiescent periods [Crutzen, 1976; Pitari
et al., 2002]. This finding is corroborated by a recent model-based study that indicates that although 90% of
the OCS transported into the stratosphere returns unprocessed to the troposphere, the remaining OCS con-
tributes ~56% to the stratospheric aerosol burden [Sheng et al., 2015]. There has been some debate, however,
on the magnitude of the OCS flux to the stratosphere and on the relative contribution of OCS to the strato-
spheric aerosol loading [Briihl et al., 2012; Chin and Davis, 1995; Myhre et al., 2004]. While many surface flask
measurements of OCS were made from 2000 to 2006 [Montzka et al., 2007], no significant trend was found
over the Southern Hemisphere during this period, corroborating results from other studies [Coffey and
Hannigan, 2010; Griffith et al., 1998; Rinsland et al., 2008]. These results, together with a study by Sturges
et al. [2001] that demonstrated that OCS has changed little over the last 20 years of the twentieth century,
suggest that it is unlikely that OCS is a major contributor to the increases in stratospheric aerosol loading that
were reported by Hofmann and Deshler [1990]. More recently, ground-based lidar measurements have been
used to infer a trend in stratospheric aerosol of 4 to 7%/yr, depending on location, since 2000 [e.g., Hofmann
et al.,, 2009]. The causes for those increases remain unclear and subject to debate, but potential candidates
include increased coal combustion over China [Hofmann et al., 2009] and small volcanic eruptions [Vernier
et al,, 2011]. Furthermore, the absence of a significant trend in OCS observations indicates a balanced OCS
budget for the observation period, an assumption used by model studies using OCS to infer additional infor-
mation about the carbon cycle processes [e.g., Berry et al., 2013]. However, estimates of OCS sources and sinks
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differ [Campbell et al., 2008; Sandoval-Soto et al., 2005; Suntharalingam et al., 2008], and therefore, large uncer-
tainties in the OCS budget remain [Kettle et al., 2002; Montzka et al., 2007] and a debate whether or not the
OCS budget is balance remains.

This paper presents the first analysis of long-term trends in total columns of OCS, as well as partial columns
for the troposphere and stratosphere in the Southern Hemisphere. Retrieving tropospheric and stratospheric
columns permits disaggregation of total column OCS changes into tropospheric and stratospheric contribu-
tions. The results presented here show a significant positive trend over the 2001 to 2014 period that was not
previously observed in the Southern Hemisphere.

2. Method

2.1. Measurements

Ground-based Fourier transform spectrometer (FTS) measurements of OCS from 2001 to 2014 made at three
different sites, representing diverse environments, in the Southern Hemisphere, viz., Wollongong, Australia
(34.45°S, 150.88°E); Lauder, New Zealand (45.04°S, 169.68°E); and Arrival Heights, Antarctica (77.80°S,
166.67°E), are analyzed. OCS total and partial columns were derived from solar infrared spectra recorded
by a Bruker 120HR at Lauder [Jones et al., 2009; Zeng et al., 2012], a Bruker 120M at Arrival Heights [Wood
et al, 2002], and a Bomem DA8 from 2001 to August 2007 and a Bruker 125HR from August 2007 to 2014
at Wollongong [Griffith et al., 1998; Kohlhepp et al., 2012; Paton-Walsh et al., 2004]. To ensure that differences
in OCS behavior across the three sites are unaffected by the configuration of the retrieval, the same retrieval
settings were used at all three sites, i.e,, fitting four microwindows covering the p19 (2053.98-2054.24cm ™),
p25(2051.18-2051.48 cam™), p28 (2049.75-2050.12 cm ™), and P32 (2047.78-2048.22 cm ™) lines of the OCS
v3 band. The interfering gases are carbon monoxide (CO), carbon dioxide (CO,), water vapor, and ozone. The
nonlinear fitting algorithm used for the retrievals (SFIT4 version 9.4.4 [Rinsland et al., 1998]) is designed to
retrieve vertical profiles of one or more gases from solar absorption FTS spectra. The forward model com-
prises 48 layers with density-weighted effective temperatures and pressures generated by refractive ray
tracing through an atmospheric path given the solar zenith angle (at the time of measurement) and the
location and altitude of the spectrometer. The forward model includes a full description of the instrument
lineshape, instrument distortion, and field of view. The spectroscopic parameters are based on HITRAN
2012 [Rothman et al., 2013]. Isotopes of CO, are treated separately as interfering species. The forward model
also accommodates interfering solar CO lines [Hase et al., 2006]. Since water vapor absorption is present in
the spectral microwindows, it is fitted as an interfering species with an a priori profile based on National
Centers for Environmental Prediction (NCEP) reanalysis. NCEP profiles of temperature and pressure are
included in the retrieval. The OCS a priori mixing ratio profiles were obtained from the Whole Atmosphere
Community Climate Model (WACCM) [Marsh et al., 2013]; profiles were adjusted based on the mean
tropopause height at each site.

The inverse model uses a semiempirical implementation of optimal estimation theory [Rodgers, 1976]. The a
priori covariance matrix is based on the 1o variances from WACCM. The assumed signal-to-noise ratio of the
spectra is 500. This combination of regularization results in ~2 degrees of freedom. The inverse model in SFIT4
actively fits all four microwindows simultaneously, along with a background slope, wavenumber shifts, and,
for Wollongong spectra recorded between 2001 and 2004, a parametrized function to model the instrument
line shape.

The retrieved profiles are integrated to provide partial columns. Using the convention presented in Rodgers
[1976], the averaging kernels and degrees of freedom were used to confirm the validity of the altitude selected
to separate tropospheric and stratospheric columns. Tropospheric columns were calculated from the surface to
12.5 km at Wollongong, to 10.9 km at Lauder, and to 9.2 km at Arrival Heights. Stratospheric columns comprise
the OCS column concentrations above these mean tropopause levels. Typical mean (2001 to 2014) total
column values for Wollongong and Lauder are 8.9 x 10'® and 8.7 x 10" molecules/cm?, respectively, while
for Arrival Heights, the typical mean is 8.3 x 10'> molecules/cm? (noting that no measurements are avail-
able in winter). The mean (2001 to 2014) tropospheric and stratospheric columns for Wollongong are
7.54% 10" and 1.34x 10" molecules/cm?, for Lauder are 7.13x 10"> and 1.57 x 10"> molecules/cm?, and
for Arrival Heights are 6.81 x 10'> and 1.51 x 10"® molecules/cm?.
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2.2. Analysis

As the primary focus of this study is to determine trends in OCS from all three sites, OCS anomalies are
calculated with respect to the 2001 to 2014 stationary part of the annual cycle, i.e., the annual cycle that is
time invariant. This stationary part of the annual cycle is calculated separately for each site by applying a
linear least squares regression model (including offset and trend basis functions) to the total and partial
OCS column measurements. To capture the annual cycle, the offset coefficient is expanded in four Fourier
pairs for Lauder and Wollongong and in two Fourier pairs for Arrival Heights as the absence of
measurements in polar darkness hampers the resolution of the seasonal cycle in OCS. Using a regression
model to determine the annual cycle in OCS columns rather than calculating it from the measurements
directly avoids biases due to missing data and/or extreme values in any particular month.

To estimate long-term trends in the OCS measurement series and their trend uncertainties, a linear least
squares regression model was applied individually to the monthly mean OCS total, tropospheric and strato-
spheric column anomalies, together with their measurement uncertainties, at all three sites. As any systema-
tic bias component of the total uncertainty of the OCS measurements does not affect the trend of the time
series, only the random uncertainties are passed to the regression model. The regression model is con-
structed as follows:

OCSi=a +f xt1+ yxty+ J xt3+ ¢ x TropHgt, + R: (1)

where OCS; is the OCS column anomaly at time t. a to ¢ are the regression model fit coefficients calculated
using a multivariate least squares regression approach [Moore and McCabe, 2003].

The OCS total, tropospheric and stratospheric column measurements, above all three sites show time-varying
linear trends with two discernible inflection points. While the long-term linear trend could be estimated by
applying a typical trend regression model [Bodeker and Kremser, 2015], the inflection points would not be
appropriately accounted for. Therefore, the regression model is constructed to allow for different trends in
three different periods separated by two inflection points, while ensuring that the regression fit is piecewise
continuous. t; is the number of months after January 2001, and its associated fit coefficient (8) then repre-
sents the trend over the period to the first inflection point. t, is the number of months after the first inflection
point and set to zero beforehand; its associated fit coefficient (y) represents the change in trend, with respect
to B, after the first inflection point. Similarly, t3 is the number of months after the second inflection point, and
its associated fit coefficient (J) represents the change in trend with respect to y. While the choice of the num-
ber, and timing, of the inflection points is somewhat arbitrary, the regression model can be used to guide the
optimal number of inflection points, as well as their timing. Including two inflection points in the regression
model resulted in the smallest sum of the squares of the residuals but avoiding overfitting. To estimate the
optimal timing of the inflection points, a wide range of combinations of the timing of the inflection points,
constrained by visual assessment of realistic values, was explored using the regression model to find the
minimum of the sum of the squares of the residuals.

To account for the seasonality in the trend fit coefficients, these coefficients were expanded in Fourier series
[Bodeker and Kremser, 2015], e.g., the coefficients S, y, and ¢ are expanded in one Fourier pair as follows:

B = Po+ Pix sin(2eM/12) + B, x cos(2n M/12) (2)
where M is the month number.

The potential influence of the seasonal variation in tropopause heights is accounted for by including monthly
mean tropopause heights, obtained from NCEP (National Centers for Environmental Prediction) Climate
Forecast System Reanalyses, as a basis function in the regression model (TropHgt,). As potential trends in
tropopause heights could alias into trends in OCS columns, the contribution of the trend in tropospheric
heights to the trend in OCS columns was determined, and the results indicate that any contribution is small,
less than 0.5% for Lauder, less than 1% for Wollongong, and less than 3% for Arrival Heights. Furthermore, to
ensure that any trend in OCS is assigned exclusively to the trend basis functions, the tropopause height time
series (TropHgt in equation (1)) were detrended before being used in the regression model.

Ry is the residual, i.e,, that part of the signal that cannot be described by the regression model and is calcu-
lated by subtracting the model fit from the measurements. The uncertainties on trend coefficients were
obtained by applying a bootstrap method [Efron and Tibshirani, 1986], generating 10,000 trend values
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Figure 1. Monthly mean total column OCS anomalies above (a) Wollongong, (b) Lauder, and (c) Arrival Heights. OCS
anomalies (black dots) are shown together with their random uncertainties (vertical error bar). The indicative total uncertainty
(random + systematic) on the measurements is shown on the far right of each panel, centered on the zero line (~5%). The red
line shows the regression model fit and its 20 uncertainty (grey shading). Derived trends that are statistically significantly
different from zero at the 1o level are listed in white boxes; statistically insignificant trends are listed in grey boxes.

individually for total and partial columns. The standard deviation of those 10,000 values was then calculated
to obtain the uncertainties on the trend values.

3. Results and Discussion

The monthly mean total column OCS anomalies, together with the regression model fit, are shown in
Figure 1. Percentage values throughout this paper (including those for tropospheric and stratospheric col-
umns) are with respect to the mean total column OCS above each site from 2001 to 2014. A positive trend
in total column OCS is apparent at all three sites. Above Wollongong and Lauder, the strongest trend in
OCS is observed from 2001 to mid-2008, followed by a ~1.5 year period of decreasing OCS and then weaker
positive trends until the end of 2014. In all three periods, at both Lauder and Wollongong, derived trends are
statistically significantly different from zero at the 2o level (hereafter, simply referred to as statistically
significant). Of the three sites, Wollongong shows the strongest positive trends in OCS at 1.13 +0.04%/yr
(1o uncertainties are quoted hereafter) for the first 7.5years and 0.84+0.08%/yr for the last 4.5 years.
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Figure 2. As in Figure 1 but for tropospheric OCS columns. The total uncertainty on the tropospheric columns is ~4.7% for
all sites.

Furthermore, the reversal in the OCS trend from 2008 to the end of 2009 is most pronounced above
Wollongong. Similarly, from the second quarter of 2008 to the beginning of 2010, the trend in total column
OCS above Lauder changes sign, and OCS decreases by —0.60 +0.16%/yr. The period from 2001 to 2008,
during which OCS increases above Arrival Heights, is followed by ~4 years of no discernible trend (Figure 1).
During the last 3 years of the observation period, total column OCS above Arrival Heights increases at 0.55
+0.45%/yr. The temporal coherence of OCS trends, and the two inflection points across all three sites, has,
to our knowledge, not been observed to date at any other sites in the Southern Hemisphere.

When it comes to partial columns, the short-term fluctuations in the regression model (red line in Figures 2 and 3),
resulting from inclusion of the tropopause heights as a basis function (equation (1)), become more visible than
looking at total OCS columns. Tropospheric OCS columns increase between 2001 and 2014 but, similar to the
total columns, show time-varying trends with two inflection points, at all three sites (Figure 2). All calculated
trends in tropospheric OCS columns are statistically significant, except for the trend at Lauder from 2008 to
the end of 2011 and at Arrival Heights from 2007 to the end of 2013. These trends are only statistically signifi-
cant at the 1o level. The largest trend in tropospheric OCS of 0.99 + 0.04%/yr is observed above Wollongong
from 2001 to the end of 2008. While the single year of decreasing tropospheric OCS in 2009 is apparent in
the Wollongong data, the positive trend weakens above Lauder from 2008 to the end of 2011 and above
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Figure 3. As in Figure 1 but for stratospheric columns. The total uncertainty on the stratospheric columns is ~9% for all sites.

Arrival Heights from 2007 to the end of 2013. Toward the end of the observation period, positive trends are
observed above both Wollongong and Lauder with the Wollongong tropospheric OCS trend initiating two
years earlier than at Lauder and at a greater rate. There are insufficient data after 2013 to derive a robust trend
above Arrival Heights during this period, and therefore, trends over this short period are not considered.

Stratospheric OCS column anomalies above Wollongong and Lauder show similar trend structure to that
observed in tropospheric and total column anomalies (Figure 3). However, unlike the tropospheric and total
column anomalies where trends were strongest at Wollongong, trends in stratospheric anomalies are stron-
gest at Lauder. Negative trends in stratospheric OCS start a few months later above Lauder compared to
Wollongong and last about a year longer than at Wollongong. Both sites show a positive trend in strato-
spheric OCS of similar magnitude thereafter. Trends in stratospheric OCS at Lauder and Wollongong are
statistically significant. Above Arrival Heights, the magnitude of the positive trend in stratospheric OCS from
2001 to the end of 2011 is comparable to the trend observed above Wollongong and weaker than observed
at Lauder. The positive trend ceases toward the end of the observation period, and the trend thereafter is not
statistically significant.

When examining overall trends using a regression model containing a single trend basis function, total
column OCS anomalies above all three sites show clear positive trends over the full period that are statis-
tically significant. Examination of overall trends disaggregated between the troposphere and stratosphere
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(as was done for the piecewise trends above) indicates that the overall trends in total column OCS are
driven mainly by changes in the troposphere. The overall trend in total column OCS above Wollongong
is 0.73 £ 0.03%/yr with a troposphere/stratosphere disaggregation of 94% to 6%. The overall trends in total
column OCS above Lauder and Arrival Heights are very similar, showing an increase of 0.43 £ 0.02%/yr and
0.45 + 0.05%/yr, respectively. The tropospheric/stratospheric contribution is 76% to 24% for Lauder and
82% to18% for Arrival Heights. The overall positive trend in OCS suggests that OCS sources and sinks are in
imbalance. This conclusion differs from the conclusion that would be derived from previous OCS observations
that do not show any trend, e.g., from flask measurements over the period 2000 to 2006 [Montzka et al., 2007].

The flask measurements presented in Montzka et al. [2007] were recently updated (http://www.esrl.noaa.gov/
gmd/hats/gases/OCS.html). A detailed trend analysis of these updated flask measurements has not been
published to date. A very preliminary analysis of these raw flask measurements suggests, that OCS concen-
trations obtained from measurement sites in the Southern Hemisphere, e.g., flask measurements obtained
at Cape Grim (Australia) and Samoa (Pacific), show a small positive trend from 2010 onward. In addition, flask
measurements obtained at Cape Grim show a slight decrease in OCS between 2007 and 2009. These results
show that the flask measurements are broadly consistent with the FTS column data presented here. Because
of the longevity of OCS, a longer-lasting trend would be expected to express itself in both in situ measure-
ments at any station in the troposphere and FTS measurements of the whole column. However, because in
situ flask measurements and tropospheric columns will be affected by transport processes in a different
way, any quantitative conclusion and detailed comparison of the flask with FTS measurements are only pos-
sible via a detailed transport model which is beyond the scope of this paper.

4, Conclusion

The positive trends in OCS described above suggest that either (i) tropospheric OCS sources have increased,
(i) an additional unknown source of OCS exists (most likely of anthropogenic origin), (iii) tropospheric OCS
sinks have decreased, (iv) the speed of the stratospheric circulation that transports OCS from the tropics to
the middle and high latitudes has increased, or (v) the flux of OCS entering the stratosphere in the tropics
has increased. An increase in OCS flux to the stratosphere could result from increased surface OCS emissions
due to increases in rayon production in China over the last decade [Campbell et al.,, 2015] and subsequent
transport to the stratosphere via the Asian Monsoon [Randel et al., 2010]. The temporal coherence of the
changes in the trends across the three widely distributed sites is consistent with OCS's long lifetime in the
troposphere. However, the temporal coherence of the trends may also indicate that their cause is hemi-
spheric in scale rather than local in scale. That said, the fact that the tropospheric trend is greater than the
stratospheric trend, which is the opposite of what would be expected from a change driven by large-scale
dynamics such as the Brewer-Dobson circulation, detracts from the inference that the cause is hemispheric
in scale. Longer OCS measurement series at globally distributed sites, together with targeted model studies
that account for changes in the large-scale circulation and OCS transport, are required to address the new
questions revealed in this study.
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