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The Problem What TES and IASI measure e
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1) What is the bias in IPCC climate model
predictions of present day top-of-atmosphere
(TOA) flux in the 9.6um ozone band?
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2) What is the impact of an ozone band TOA flux
bias on present day tropospheric ozone flux
sensitivity and pre-industrial to present day
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Example of TES spectral radiance used to retrieve
O; vertical profiles.
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Direct Ozone RF
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Large range in model estimates for: will be tested with CAM-chem, RRTMG and GISS radiative
transfer (RT) models using TES and IASI TOA flux and IRKs.
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Long wave radiative effect (LWRE) in W/m?

TOA long-wave ozone band flux LWRE: Long-Wave Radiative Effect

L atitudinal zonal averages of A, computed for differences
(modeled — observed) in tropospheric ozone distributions using

TES TOA flux (FTO ) for August 2006 T IESIRK the TES IRK compared to the GISS RTM TOA flux sensitivity.
Similar to OLR but only for the IR ozone band
This is a fundamental quantity, predicted by
climate models, but never tested against
observations.

Positive values for A ,ge in the southern hemisphere reflect negative
differences in ozone, while the northern hemisphere had positive ozone
differences (model higher than observations). Although the ozone
difference profiles are identical for both calculations, atmospheric opacity
due to clouds, water vapor and temperature could have large differences
between the GISS model and TES observations. Since the GISS model
has a known dry bias in the upper troposphere at mid-latitudes,
[Lamarque et al., 2013, supplement], this could contribute to a higher
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' sensitivity to changes in ozone as compared to TES.
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O, band flux comparison with RRTMG mgconscd - s T, s rmoves
for atmospheres specified from TES ;
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Known issues:
* RRTMG band is 980-1080;
TES band is 985-1080
(~1.1 to 1.7 W/m?)
* RRTMG-corrected adjusts for this

Tropospheric O3 LWRE (W/m2)

Latitude

RRTMG clear-sky (W/m?2)

: : JJA zonal averages for tropospheric ozone LWRE from two
difference in frequency range. RTMs applied to the same atmospheric and surface conditions.

* Different estimate of anisotropy Differences are due only to the different assumptions for

- 2 . .. g
» Assumptions for water vapor in RRTMG TES clear-sky (W/m?) radiative transfer in CAM4 RT vs. RRTMG. Tropospheric 03 LWRE from IASI on MetOp-A for a single day of
- scatter not due to TES noise (0.1% for flux) Note the large differences even for clear-sky (clouds removed). observations. White areas indicate clouds and measurement gaps.
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Ozone and Water Vapor radiative coupling Conclusions
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* TOA flux from the IR Ozone band is a fundamental
guantity in climate models that has not been
compared to measurements.
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» Continuing the TES record with |IASI| data Is critical for
understanding present day to future changes in O,
radiative forcing, such as cloud coverage and water
vapor feedback.

H,0 (InVMR) Jacobians Fine spectral resolution is critical for separating
O, and H,0 flux variability
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Attribution of bias in O; LWRE due to model/data * [nitial results show differences for both flux and flux
differences in atmospheric state: L
sensitivity between models and data that need to be

Fasullo and Trenberth [2012] showed that IPCC models -
overestimated relative humidity in the tropical subsidence reconci Ied .
regions, which was directly related to how the models predicted
global mean surface temperature change from a doubling of CO2
(i.e., climate sensitivity). Therefore, we could expect that IPCC
chemistry-climate models will have a biased atmospheric state in
the tropical subsidence region, which will then lead to biases in
the model LWRE due to atmospheric opacity and consequently
ozone radiative forcing.

Aug. 2006, Clear—sky ocean/day, —15° to 15°N Aug. 2006, Cleor—sky ocean/ngt, —15° to 15°N
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f.=-038 4 L corr. coe ff. = —0.49
lope = —0.03820.003 W/m’/cm(prwv) slope = ~0.047+0.003 W/m’/cm(prwv)
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New TES research products to
examine O; RF feedbacks and bias:

corr. coeff. = —-0.22
slope = —0.014+0.006 W/m’/cm(prWwv)

http://tes.jpl.nasa.gov/ http://smsc.cnes.fr/IASI/
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