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Motivation of the DC3 Field Campaign DC3 Data Analysis Activities
What role do thunderstorms have in affecting the upper troposphere — lower Research includes investigating the transport and dynamics of the storms, scavenging of soluble trace gases and aerosols, production of nitrogen oxides by
stratosphere (UTLS) composition and chemistry? lightning, relationships between lightning flash rates and storm parameters, and chemistry in the UT that is affected by the convection. Here, we show

highlights of studies focused on the UTLS composition.

Goals of the DC3 Field Campaign:

Convective transport of water vapor into the lower stratosphere observed during double-tropopause events
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Thunderstorms Enhance Tropospheric Ozone by Wrapping and Shedding Stratospheric Air
Pan et al., Geophys. Res. Lett., 2014

Key Points

* Tropopause-reaching MCSs entrain ozone-rich
stratospheric air into troposphere
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downwind of storms in UT

Photochemical Aging and New Particle Formation in the Convective Outflow of a Decaying Mesoscale Convective System (MCS)

May — June 2012 over the Central U.S. Cantrell, Barth, Ziemba, Nault, Cohen and others
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| Ozone (left) and particle number concentration (right) for the 21 June 2012
“ DC3 case along the flight tracks. Both variables are quite low until late morning
(1600 UTC) when values increase substantially.
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Key Points

NSF/NCAR Gulfstream V, NASA DC-8, and DLR Falcon aircraft flew 19

thunderstorm cases, > 6 photochemical aging cases In situ measurements of nitric acid plus particulate nitrate 2 |
increase from early morning to mid day while NO and NO, 2

decrease. These data are being analyzed to constrain rate

* Probing the convective outflow region of a decaying
MCS is a fruitful way of measuring changes in UTLS
composition after active convection

constants for the production of HNO, in the UT, including ’ T * Ozone mixing ratios increase by ~20 ppbv during day
3 /]
NO, + OH = HNO,; and HO, + NO = HNO,. See poster by 2 3007 * Thousands of new particles are formed beginning in
Ben Nault et al. A23J-3379 for more details. = mid-morning
Z 200t
: . : : * Analysis of total nitric acid and NO, species can
Data available from http://www.eol.ucar.edu/field projects/dc3 =l constrain UT rate constants and NO.-HO. -0, chemistry

Overview paper: Barth et al., accepted by Bull. Amer. Meteor. Soc. 1320 1400




