

Satellite remote sensing of trace gases – Limb sounding geometry

Gabriele Stiller

Institute of Meteorology and Climate Research

www.kit.edu

Outline

- Characteristics of the limb observation geometry
	- Solar, lunar and stellar occultation
	- **Limb emission sounding**
	- **Limb scattering**
- Spectroscopy and Radiative transfer
	- Physical basis molecular absorption, emission, and scattering
	- Radiative transfer equations for various observation geometries and wavelength ranges
- Wavelength ranges and related instruments
	- Trace species
	- Coverage
- Retrieval theory
- Examples of trace species distributions from different instruments
- Data availability and download

What is remote sensing from satellites?

- Satellite instruments do not measure at the position of the atmosphere the scientists are interested in **– remote**
- **The instruments do not measure the composition or other physical** parameters directly **- indirect**
- The measurement technique makes use of the interaction of the atmosphere's constituents with electromagnetic fields – absorption, emission or scattering of photons
- **All satellite instruments measure the spectral distribution of photons** arriving at the instrument and deduce from this the distribution of constituents in the atmosphere

How? This is the content of this talk

Characteristics of the limb sounding observation geometry

Limb viewing geometry

- Long Long way through the atmosphere very sensitive to low abundances
- Atmosphere usually becomes too dense at low altitudes covers atmosphere down to upper troposphere only
- Observations at different viewing angles provide profiles with good vertical resolution

11 June 2015 **Figure by Carlotti and Magnani, Optics express, Vol. 17, <u>Issue 7, pp. 5340-5357 (2009)</u> http://www.osapublishing.org/oe/fulltext.cfm?uri=oe-17-7-5340**

Solar, stellar and lunar occultation

- Satellite instruments looks through the atmosphere to a bright radiation source; very good signal-to-noise ratio
- The radiation of the source is attenuated by the atmosphere
- The absorption signatures contain the information on the atmosphere
- The Planck function of the incoming radiation is determined by temperature of emitter: Sun \sim 5700 K, moon \sim 270 K, stars: like the sun, or hotter/colder UV VISIBLE **INFRARED**
- Along the orbit of a satellite, the instrument can measure only a few times:
	- **For solar/lunar occultation for** example: one sun/moon-rise and one sun/moon-set
	- **For stellar occultation: depends on** the number of stars used

http://upload.wikimedia.org/wikipedia/commons/1/19/Black_body.svg

6 And June 2015 Gabriele Stiller - Satellite R^{earth} Kule (Own work) [Public domain], via Wikimedia Commons ، والتاريخ المستحدة التي تم يتم التعليم التي تتم التي تتم

Limb emission sounding

- No background radiation source, the Earth's atmosphere itself is the radiation emitter.
- Due to lower temperatures of the atmosphere compared to stars, the Planck function's peak is far lower, and the peak position is shifted to higher wavelengths (infrared to microwave); lower signal-to-noise ratio.
- The measurements do not depend on the satellite position relative to the radiation source: day and night time measurements over the full globe (depending on inclination angle) are possible.

http://upload.wikimedia.org/wikipedia/ commons/0/0e/ BlackbodySpectrum_loglog_150dpi_de.p

ng

By Sch (Own work) [GFDL (http:// www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0 (http://creativecommons.org/ licenses/by-sa/3.0/)], via Wikimedia Commons

Limb scattering

- Sunlight scattered by the gaseous atmosphere or particles (clouds, aerosols) towards the satellite position is measured
- Makes use of the radiation maximum of the sun: VIS-UV
- Complicated radiative transfer due to (multiple) scattering
- Independent of satellite position wrt sun, but only daytime measurements possible

Figure from E. Kyrölä, https://earth.esa.int/dragon/D3_L3_Kyrola.pdf

Spectroscopy and Radiative transfer – the physical basis

- The electromagnetic spectrum of the atmosphere (absorption or emission) results from the interaction of molecules and particles with the electromagnetic field
- Wavelength ranges: UV, Visible, Near-infrared, infrared, far infrared, sub-millimeter wave, millimeter wave, microwave
- In the following:

UV, vis, NIR

mid-infrared

FIR, Sub-millimeter, millimeter and microwave

Spectroscopy and radiative transfer – UV/vis and NIR (SWIR)

- Relevant processes: absorption and emission of electronic states, scattering of radiation at molecules (molecular size and wavelength is similar!)
- Examples: ozone Huggins band at 320-360 nm, Hartley bands between 200 and 300 nm, Chappuis band 375 to 650 nm **Solar Radiation Spectrum**

250 500 750 1000 1250 1500 1750 2000 2250 2500 Trac sciamachy_book_figures_springer/chapter_7_figures_ **http://atmos.caf.dlr.de/projects/scops/sciamachy_book/ springer.html**

Spectroscopy and radiative transfer – mid-IR (~4 to 15 µm = 2500 to 667 cm-1)

- Relevant processes: Absorption and emission by molecular states (rotation-vibration states)
- Scattering relevant for particles only (clouds, aerosols)
- Spectra are line spectra
- All molecules with a permanent dipole moment emit or absorb (not O2, N2)

Spectroscopy and radiative transfer – FIR, mm, sub-mm and microwave (15µm to 1cm; 20 THz to 30 GHz)

- Relevant processes: absorption and emission by rotational states of molecules
- (Almost) no sensitivity for particles (clouds, aerosols)
- FIR and sub-millimeter: 15 μ m – 1 mm (20 THz 10^{6} to 300 GHz)
- microwave: > 1 mm (< 300 GHz)

Spectroscopy and Radiative Transfer – Radiative transfer calculations

Chandrasekhar's radiative transfer equation:

$$
S_{\Theta}(\nu, l_{obs}) = S_{\Theta}(\nu, l_o) \tau(\nu, l_{obs}, l_o) + \int_{l_{obs}}^{l_o} J(\nu, l) \sigma_{a, total}^{Vol}(\nu, l) \tau(\nu, l_{obs}, l) dl
$$

- wavenumber $\boldsymbol{\nu}$
- l path coordinate

Schematic view of the observation geometry

Background radiation S_{Θ} attenuated by transmittance τ through entire atmosphere Plus, for each path element:

 Source function (= Planck function for T) at each point l along the line of sight modulated by the emission characteristics of the composition of this path element and transmitted through the rest of the atmosphere from I to I_{obs}

14 11 June 2015 **Figure by Carlotti and Magnani, Optics express, Vol. 17, Ssue 7, pp. 5340-5357 (2009) http://www.osapublishing.org/oe/fulltext.cfm?uri=oe-17-7-5340**

The information we want to derive is in σ and τ:

$$
\tau(\nu, l_1, l_2) = \exp \left\{\int\limits_{l_1}^{l_2} \sigma_{a, gas}^{Vol}(\nu, l) dl + \int\limits_{l_1}^{l_2} \sigma_{e, aerosol}^{Vol}(\nu, l) dl \right\}
$$
\n
$$
= \exp \left\{\sum\limits_{j=1}^{G} \int\limits_{l_1}^{l_2} \sigma_{a, g}(\nu, l) \frac{\partial m_g(l)}{\partial t} dl + \int\limits_{l_1}^{l_2} \sigma_{e, aerosol}^{Vol}(\nu, l) dl \right\}
$$
\n
$$
\sigma_{a, gas}^{Vol}(\nu, l) = \sum\limits_{g=1}^{G} \sigma_{a, g}(\nu, l) \cdot \rho_g(l) \qquad \underbrace{m_g(l)}_{\text{Aerosol}} = \text{slant path} \text{column amount of gas g}
$$
\n
$$
\rho_g(l) = \text{dssorption} \qquad \sigma_{a, g}(\nu, l) = \text{absorption} \qquad \text{coefficient of gas g}
$$
\n
$$
\rho_g(l) = \text{C}_{V,g} \frac{N_{avo}}{R} \cdot \frac{p(l)}{T_{kin}(l)} \qquad \text{C}_{V,g} = \text{volume mixing}
$$

Further terms:

If scattering plays a role, we need an additional source term for the scattering of radiation **into** the line of sight:

$$
J_s(\nu,l) = \frac{\Omega_o}{4\pi} \int \int p(\Omega,\Omega') S(\Omega,\Omega') d\Omega'
$$

- $\sigma_{a,g}$ (v,l) is calculated from data bases containing spectroscopic information on the gases (position, intensity, width of spectral signatures) and quantum mechanical laws regulating the dependence on temperature and pressure of these
- Databases: e.g. HITRAN, GEISA, etc.
- A detailed description of a radiative transfer model for the mid-infrared can be found at:

http://www.imk-asf.kit.edu/english/312.php (KOPRA)

Wavelength ranges and related contemporary limb instruments: UV/vis/NIR/SWIR

Previous instruments: POAM, SAGE

17 11 June 2015 Gabriele Stiller - Satellite Remote Sensing of Trace gases - Limb sounding **Institute of Meteorology and Climate Research**

Wavelength ranges and related contemporary limb instruments: mid-IR

Earlier instruments: ATMOS, CLAES, CRISTA, HALOE, ILAS

Role of spectral resolution for mid-IR observations

Figure: T. von Clarmann, 2015

Wavelength ranges and related contemporary limb instruments: FIR/mm/sub-mm/microwave

Earlier instruments: UARS/MLS

Retrieval theory

Linearization of the problem:

$$
\mathbf{y} = f(\mathbf{x}) + \boldsymbol{\epsilon} = f(\mathbf{x}_0) + \mathbf{K}(\mathbf{x} - \mathbf{x}_0) + \boldsymbol{\epsilon} = \mathbf{y}_0 + \mathbf{K}(\mathbf{x} - \mathbf{x}_0) + \boldsymbol{\epsilon}
$$

y = vector of radiance measurements by the instrument, dimension m

- **x** = vector of atmospheric parameters to be determined, for example volume mixing ratio of gas g, dimension n
- f = radiative transfer equation

$$
\mathbf{K} = \text{Jacobi matrix} \, \partial y_m / \partial x_n
$$

Assuming the errors of **y** follow a Gaussian distribution, the probability density distribution of **y** for a given **x** is

$$
pdf(y) = c exp - [1/2(y - F(x))^{T}S_{y}^{-1}(y - F(x))] \approx c exp - [1/2(y - y_{0} - K(x - x_{0}))^{T}S_{y}^{-1}(y - y_{0} - K(x - x_{0}))]
$$

With **Sy** = covariance matrix of **y** (diagonals are variances of **y**) The most likely **x** maximizes pdf (**y**); i.e. derivative of this expression wrt **x** is zero:

$$
x_{ml} = x_0 + (K^{T}S_{y}^{-1}K)^{-1}K^{T}S_{y}^{-1}(y - F(x_0))
$$

This is the Maximum Likelihood solution of the problem

T. von Clarmann, 2015

Bayesian solution = maximum a posteriori solution = optimal estimation

- Some *a priori* knowledge is available, e.g. climatologies
- This information is introduced in Bayesian sense: the best estimate is the weighted mean of the measurement and the a priori knowledge, both weighted with their inverse covariance matrices
	- pdf = c₁ exp-[¹/₂(y-F(x)^TS_v-1(y-F(x)] c₂ exp -[¹/₂(x-x_a)^TS_a-1(x-x_a)] = c₃ exp-[¹/₂(y-F(x)^TS_v⁻¹(y-F(x) + (x-x_a)^TS_a⁻¹(x-x_a)]

$$
x_{\text{map}} = x_{a} + (K^{T}S_{y}^{-1}K + S_{a}^{-1})^{-1}K^{T}S_{y}^{-1}(y - F(x_{a}))
$$

- (Rodgers, 2000)
- **If** (and only if!) the true state is part of the ensemble the climatology (x_a) , **S**_a) is built from **then** x_{map} is the most probable solution (most probable atmospheric state)
- Since radiative transfer is often not linear enough in real live, both (\mathbf{x}_{m} and \mathbf{x}_{map}) solutions need iterative approaches **T. von Clarmann, 2015**

Other constraints: Tikhonov smoothing

- If a priori knowledge is not available, or I do not want to use it for what reason so ever, another approach to constrain the solution is such that the derived profile becomes smooth.
- We replace S_a⁻¹ by the term γL₁^TL₁ ... and receive

$$
\hat{\mathbf{x}} = \mathbf{x}_0 + \left(\mathbf{K}^T \mathbf{S}_y^{-1} \mathbf{K} + \gamma \mathbf{L}_1^T \mathbf{L}_1\right)^{-1} \mathbf{K}^T \mathbf{S}_y^{-1} (\mathbf{y} - \mathbf{f}(\mathbf{x}_0))
$$

Note that this solution is not expanded around x_a but around x_0 . **Meaning of γL₁^TL**₁:

$$
\begin{pmatrix}\n-1 & 1 & 0 & \cdots & 0 & 0 \\
0 & -1 & 1 & \cdots & 0 & 0 \\
& & & \ddots & & \\
0 & 0 & 0 & \cdots & -1 & 1\n\end{pmatrix}
$$
\n
$$
\mathbf{x} = \mathbf{L}_1 \mathbf{x} \qquad \text{and we need this term squared:}
$$
\n
$$
\mathbf{L}_2 \mathbf{x} = \mathbf{L}_1 \mathbf{x} \qquad \text{and we need this term squared:}
$$
\n
$$
\mathbf{L}_2 \mathbf{x} = \mathbf{L}_2 \mathbf{x} \qquad \text{and we need this term squared:}
$$
\n
$$
\mathbf{L}_1 \mathbf{x} = \mathbf{L}_2 \mathbf{x} \qquad \text{and we need this term squared:}
$$
\n
$$
\mathbf{L}_2 \mathbf{x} = \mathbf{L}_1 \mathbf{x} \qquad \text{and we need this term squared:}
$$
\n
$$
\mathbf{L}_1 \mathbf{x} = \mathbf{L}_2 \mathbf{x} \qquad \text{and we need this term squared:}
$$
\n
$$
\mathbf{L}_2 \mathbf{x} = \mathbf{L}_1 \mathbf{x} \qquad \text{and we need this term squared:}
$$
\n
$$
\mathbf{L}_1 \mathbf{x} = \mathbf{L}_2 \mathbf{x} \qquad \text{and we need this term squared:}
$$
\n
$$
\mathbf{L}_2 \mathbf{x} = \mathbf{L}_1 \mathbf{x} \qquad \text{and we need this term squared:}
$$
\n
$$
\mathbf{L}_2 \mathbf{x} = \mathbf{L}_2 \mathbf{x} \qquad \text{and we need this term squared:}
$$
\n
$$
\mathbf{L}_3 \mathbf{x} = \mathbf{L}_3 \mathbf{x} \qquad \text{and we need this term squared:}
$$
\n
$$
\mathbf{L}_3 \mathbf{x} = \mathbf{L}_3 \mathbf{x} \qquad \text{and we need this term squared:}
$$
\n
$$
\mathbf{L}_1 \mathbf{x} = \mathbf{L}_2 \mathbf{x} \qquad \text{and we need this term.}
$$

T. von Clarmann, 2015

Characterization of the retrieval results

- The averaging kernel provides information how the true atmospheric profile is represented in the retrieval (and to which degree it depends on *a priori*):
- We define: $A = (\partial x_{map}/\partial x_{true})$

 = ratio of the result coming from the observation then:

$$
I-A = (\partial x_{\text{map}}/\partial x_{\text{a}})
$$

Using:

$$
x_{\text{map}} = x_{a} + (K^{T}S_{y}^{-1}K + S_{a}^{-1})^{-1}K^{T}S_{y}^{-1}(y - F(x_{a}))
$$

We obtain:

$$
A = (K^{T}S_{y}^{-1}K + S_{a}^{-1})^{-1}K^{T}S_{y}^{-1}K
$$

$$
X_{map} = AX + (I-A)X_{a}
$$

T. von Clarmann, 2015

Meaning of the averaging kernel

- **A** is called averaging kernel, quadratic matrix
- Rows of **A**: provides the weight with which the true atmospheric profile values contribute to the retrieval result related to this row
- Columns of **A**: response of the retrieval to a delta perturbation in the atmospheric profile => understood as **vertical resolution**
- Careful: if log(vmr) is retrieved, the averaging kernels are for log(vmr)! columns rows

How to use the averaging kernel? Example 1: compare model results to observations

 $\mathbf{x}_{comp} = \mathbf{A} \mathbf{x}_{mod} + (I - \mathbf{A}) \mathbf{x}_{a}$ HOCI change (ppbv) 70°N-90°N (night) **MIPAS** HOCl averaging kernels applied to (hPa) WACCM model results changes both vertical resolution and vertical position of the maximum

Reason: averaging kernels are not symmetric

How to use the averaging kernel? Example 2: Build a time series from 2 different instruments

Schieferdecker et al., 2015

Further retrieval diagnostics

$$
\mathbf{G} = \mathbf{x}_a + (\mathbf{K}^T \mathbf{S}_y^{-1} \mathbf{K} + \gamma \mathbf{L}_1^T \mathbf{L}_1)^{-1} \mathbf{K}^T \mathbf{S}_y^{-1}
$$

 $S_x = GS_vG^T$.

$$
\mathbf{A} = \mathbf{G}\mathbf{K} = (\mathbf{K}^T \mathbf{S}_y^{-1} \mathbf{K} + \gamma \mathbf{L}_1^T \mathbf{L}_1)^{-1} \mathbf{K}^T \mathbf{S}_y^{-1} \mathbf{K}
$$

- **S_x** is the mapping of the spectral error covariances on the retrieval result (often called "random" or "retrieval" error)
- There are further errors:
- errors due to further parameters in the radiative transfer calculations that are known with uncertainties only (temperature, line of sight, other species' concentrations, …)
- So-called "systematic" errors are uncertainties that go always in the same direction and, thus, produce a bias (e.g. spectroscopic data)
- Careful: What is given as "error" of a retrieval result varies strongly from group to group!
- Also note: filter criteria apply! Check for filter criteria for each data set!

Examples: some satellite observations related to the Asian monsoon: MLS MLS data used in Park et al., JGR, 2007

(a) MLS H_2O (Jul-Aug) 100 hPa

(b) MLS H_2O (Jul-Aug) 216 hPa

Single day observations from MLS to study variability

al., ACPD, 2015

Vertical distribution of HCN from ACE-FTS

ACE-FTS data of HCN used in Randel et al., Science, 2010

HCFC-22, HCN, and C2H6 from MIPAS

Mean stratospheric aerosol optical depth in the monsoon anticyclone from OSIRIS: Nabro, 2011

Data availability and download

ACE-FTS data: http://www.ace.uwaterloo.ca/data.html

GOMOS data:

https://earth.esa.int/web/guest/data-access/browse-data-products/-/ article/gomos-level-2-atmospheric-constituents-profiles-1506

HIRDLS data:

http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance_id=hirdls

MIPAS data:

https://earth.esa.int/web/guest/data-access/browse-data-products/-/ article/mipas-atmospheric-pressure-temperature-data-constituentsprofiles-1547 (operational product, ESA) or

http://www.imk-asf.kit.edu/english/308.php (research product, KIT)

- MLS data: http://mls.jpl.nasa.gov/index-eos-mls.php
- OSIRIS data: http://osirus.usask.ca
- SCIAMACHY data:

http://www.iup.uni-bremen.de/sciamachy/dataproducts/index.html

- SMILES data: http://smiles.nict.go.jp/pub/data/index.html
- SMR data: http://odin.rss.chalmers.se

I'd like to thank PD Dr Thomas von Clarmann for letting me use material from his lecture on remote sensing