Modeling Processes Case Study of a Dust Storm

Mary Barth (NCAR) Rajesh Kumar (NCAR)

Kumar et al. (2014) Atmos. Chem. Phys., Dust effects on radiation and aerosol optical properties

Kumar et al. (2014) Atmos. Chem. Phys., Dust effects on chemistry

Exercises will be on these topics:

- 1. Calculation of photodissociation rate constants
- 2. Effects of aerosols on photodissociation rate constants

Why Model Dust Storms and Chemistry?

- Dust storms often occur during the pre-monsoon (MAM) season in northern India and affect day to day life.
- GOAL: Understand the effect of these dust storms on regional scale aerosol optical properties, radiation budget and tropospheric chemistry.

What Causes the Dust to Reside over the IGP?

Dust from the Thar Desert gets channeled by the topography of the Indo-Gangetic Plain

What Processes Happen from the Desert to the IGP?

Modeling dust storm effects on aerosols and trace gases

• Emissions

- Dust emissions = f(wind, soil type & moisture)
- Sea salt emissions = f(wind)
- Anthropogenic emissions = prescribed
- Biomass burning emissions = f(fire size, vegetation)
- Emissions from vegetation = f(vegetation type, T, PAR)
- Transport
- Chemistry
- Deposition

Modeling emissions of aerosols and trace gases

• Dust Emissions

 $Dust_{emis} = C (f_{size} \times erod \times area) (wspd_{10m})^2 (wspd_{10m} - u_{thres}) dt$ C = tuning factor

 \rightarrow Improving dust emissions for different deserts is important

• Sea Salt Emissions

$$SS_{emis} = 4/3(\pi (r_{dry})^3 \rho_{SS} frh dF_n dr) dt$$

These equations are from the WRF-Chem GOCART emissions modules. They can easily vary among models. References are Ginoux et al. (2001, 2004); Chin et al. (2002).

Modeling emissions of aerosols and trace gases

- Anthropogenic Emissions
 - Several emissions inventories available
 - See ECCAD web site eccad.sedoo.fr/ and Sachin Ghude's lecture
- Biomass Burning Emissions

GFED <u>www.globalfiredata.org/</u>

QFED <u>http://gmao.gsfc.nasa.gov/research/science_snapshots/global_fire_emissions.php</u> FINN <u>https://www2.acd.ucar.edu/modeling/finn-fire-inventory-ncar</u> Forecast <u>http://www.acd.ucar.edu/acresp/forecast/fire-emissions.shtml</u>

• Biogenic Emissions

MEGAN

https://www2.acd.ucar.edu/modeling/model-emissions-gases-and-aerosols-nature-megan

BEIS

http://www.epa.gov/ttn/chief/emch/biogenic/beis/index.html

Modeling transport of aerosols and trace gases

- Emissions
- Transport
 - Resolved on grid of model
 - Parameterized motions in the boundary layer (i.e. diffusivity to represent large eddy motions)
 - Parameterization of convective transport
- Chemistry
- Deposition

Modeling transport of aerosols and trace gases

• Transport

- See lectures by Mark Lawrence and Federico Fierli

Modeling chemistry of aerosols and trace gases

- Emissions
- Transport
- Chemistry
 - Aerosol growth by condensation and coagulation
 - Photodissociation reactions
 - Reactions between trace gases
 - Reactions between gas and aerosol
 - Reactions in cloud and rain drops
- Deposition

Modeling aerosol physics and chemistry

• Aerosol growth by condensation and coagulation

- Photodissociation reactions
- Reactions between trace gases
- Reactions between gas and aerosol
- Reactions in cloud and rain drops

Modeling chemistry of aerosols and trace gases

- Aerosol growth by condensation and coagulation
- Photodissociation reactions

• Reactions between trace gases, e.g. $NO + O_3 \rightarrow NO_2$

HNO₃ (g)

- Reactions between gas and aerosol HNO₃ (g) + dust \rightarrow 0.5 NOx
- Reactions in cloud and rain drops
 e.g. HSO₃⁻ + H₂O₂ → SO₄²⁻

Modeling deposition of aerosols and trace gases

- Dry Deposition
 - Deposition velocity, vegetation (canopy or not), Henry's
 Law constant
 - Wesely (1989) parameterization often used
- Wet Deposition
 - Amount of cloud water, Henry's Law constant, production of precipitation, evaporation
- Henry's Law (M/atm) $[H_2O_2 (aq)] = K_H p_H_2O_2 (g)$ $K_H = Henry's Law coefficient = f(temperature)$

Modeling dust storm effects on aerosols and trace gases

Use the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) to learn what processes affect aerosols and trace gases

WRF-Chem set-up

Grid spacing: 30 km Grid points (x,y,z) = (120,90,51) Simulation period: 10-25 Apr 2010

Microphysics: Thompson Cumulus: Kain-Fritsch Surface and PBL: MYJ Scheme Radiation: RRTMG

Chemical Mechanism: MOZART gas + GOCART aerosols Photolysis: F-TUV Anthro Emissions: MACCity BB Emissions: FINN v1 Biogenic Emissions: MEGAN Initial and Boundary Conditions: Meteorology: NCEP FNL Chemistry: MOZART-4 CTM

A low pressure region over the Thar Desert generated this dust storm.

WRF-Chem captures spatial distribution of the dust storm

WRF-Chem captures AOD and Angstrom exponent

AOD – integrated extinction coefficient over a vertical column of unit cross section.
 Angstrom exponent – inverse relation with aerosol size, smaller for larger aerosols and vice versa.

[Kumar et al., ACPD, 2013]

Dust Storm almost doubled the regional aerosol loading

WRF-Chem Sensitivity Simulations

- Base Case with Dust emissions and j-values affected = DUST_J
- 2. No Dust emissions Case = **No Dust**

Dust Storm cools the surface and TOA, and warms the atmosphere

Dust storm decreases photolysis rates at the surface and increases in the upper troposphere

Quantifying Photolysis Processes

Photolysis reaction:

Photolysis rates:

$$\frac{d[NO_2]}{dt}\bigg|_{hv} = -j[NO_2]$$

 \rightarrow NO₂ + hv \rightarrow NO + O

$$\frac{d[NO]}{dt}\Big|_{hv} = \frac{d[O]}{dt}\Big|_{hv} = +j[NO_2]$$

Photolysis frequency (s⁻¹) $j = \int_{\lambda} \sigma(\lambda) \phi(\lambda) F(\lambda) d\lambda$

(other names: photo-dissociation rate coefficient, J-value)

Calculation of Photolysis Coefficients

$$J(s^{-1}) = \int \sigma(\lambda) \phi(\lambda) F(\lambda) d\lambda$$

 $\sigma(\lambda)$ = absorption cross section, cm² molec⁻¹ -- probability that photon is absorbed

 $\phi(\lambda)$ = photodissociation quantum yield, molec quanta⁻¹ -- probability that absorbed photon causes dissociation

 $F(\lambda)$ = spectral actinic flux, quanta cm⁻² s⁻¹ nm⁻¹

- = solar radiation flux onto sphere
 - -- probability of photon near molecule

Absorption Cross Section Varies with Species and Wavelength

Absorption cross sections of nitrogen dioxide $\rm NO_2$ at 294 K Results from the year 1998 and JPL-2006 recommendation

Absorption cross sections of hydrogen peroxide H2O2 at room temperature (180-400 nm)

Absorption cross sections of formaldehyde CH₂O at room temperature (results 1990-2003)

Measured Quantum Yields

Compilations of Cross Sections & Quantum Yields

http://www.atmosphere.mpg.de/enid/2295

MPI-Mainz-UV-VIS Spectral Atlas of Gaseous Molecules

A Database of Atmospherically Relevant Species, Including Numerical Data and Graphical Representations

Hannelore Keller-Rudek, Geert K. Moortgat Max-Planck-Institut für Chemie, Atmospheric Chemistry Division, Mainz, Germany

http://jpldataeval.jpl.nasa.gov/

Jet Pro California	pulsion Laboratory Institute of Technology	+ View	the NASA Portal	Search JPL
JPL HOME	EARTH	SOLAR SYSTEM	STARS & GALAXIES	TECHNOLOGY
NASA	0 ₂	ASA/JPL ata Evalua	ation	
0, 0,	02	02	Jet Pro-	oulsion Laboratory a Institute of Technology

Integrals Over Angular Incidence Irradiance vs Actinic Flux

Watts m⁻²

Watts m⁻² or quanta s⁻¹ cm⁻²

Photolysis Frequencies as Function of Wavelength

surface, overhead sun

Photolysis Frequencies and Time of Day

NO₂ photolysis has broader parabola -- result of diffuse vs direct radiation

Calculating Photolysis Freqencies Need to do Radiative Transfer Calculations

Aerosols and Clouds Affect Photolysis Rates characteristics of the aerosol or cloud layer provides information to estimate their effect

Must specify three optical properties:

Optical depth, $\Delta \tau$ Single scattering albedo, w_o = scatt./(scatt.+abs.) Asymmetry factor, g: forward fraction, f ~ (1+g)/2

Vertical optical depth, $\Delta \tau(\lambda, z) = \sigma(\lambda, z) n(z) \Delta z$

```
for molecules: \Delta \tau(\lambda, z) \sim 0 - 30
Rayleigh scatt. \sim 0.1 - 1.0
O<sub>3</sub> absorption \sim 0 - 30
```

```
for aerosols: 0.01 - 5.0
```

```
for clouds: 1-1000
cirrus ~ 1-5
cumulonimbus ~ > 100
```



```
Single Scattering Albedo
w_o(\lambda, z) = \text{scatt./(scatt.+abs.)}
```

```
SSA range: 0 - 1
limits: pure scattering = 1.0
pure absorption = 0.0
```

```
for molecules, strongly \lambda-dependent, depending on absorber amount, esp. O<sub>3</sub>
```

```
for aerosols:
sulfate ~ 0.99
soot, organics ~ 0.8 or less,
not well known but probably higher at shorter λ, esp. in UV
```

for clouds: typically 0.9999 or larger (vis and UV)

Single scattering albedo of fine mineral dust aerosols controlled by iron concentration

Moosmuller et al. (2012) Journal of Geophysical Research: Atmospheres Volume 117, Issue D11, D11210, 8 JUN 2012 DOI: 10.1029/2011JD016909 http://onlinelibrary.wiley.com/doi/10.1029/2011JD016909/full#jgrd17711-fig-0003

Asymmetry factor, $g(\lambda, z)$

```
range -1 to + 1
pure back-scattering = -1
isotropic or Rayleigh = 0
pure forward scattering = +1
```

$$g = \frac{1}{2} \int_{-1}^{+1} P(\Theta) \cos \Theta d(\cos \Theta)$$

strongly dependent on particle size for aerosols:, typically 0.5-0.7 for clouds, typically 0.7-0.9

Mie theory for spherical particles: can compute $\Delta \tau$, w_o, g from knowledge of λ , particle radius and complex index of refraction
Aerosol Effects on the Radiation

• Aerosols either scatter or absorb radiation

Uniform Cloud Layer

- Above cloud: high radiation because of reflection
- Below cloud: lower radiation because of attenuation by cloud
- Inside cloud: complicated behavior
 - Top half: very high values (for high sun)
 - Bottom half: lower values

Effect Of Uniform Clouds On Actinic Flux

Numerical Solutions To Radiative Transfer Equation

• Discrete ordinates

n-streams (n = even), angular distribution exact as n integrals but speed $\approx 1/n^2$

• Two-stream family

delta-Eddington, many others

very fast but not exact

• Monte Carlo

slow, but ideal for 3D problems

• Others

matrix operator, Feautrier, adding-doubling, successive orders, etc.

Irradiance calculations using SBDART: <u>https://paulschou.com/tools/sbdart/</u>

http://cprm.acd.ucar.edu/Models/TUV/ Photolysis Rates

Tropospheric Ultraviolet and Visible (TUV) Radiation Model

Tropospheric ultraviolet (UV) radiation is the driving force for all tropospheric photochemical processes. Photons in the UV wavelength have the potential to break usually fairly stable molecules into very reactive fragments (photolysis) and thus initiate reaction chains otherwise unlikely or even impossible. UV radiation is also harmful to living organisms and detrimental to human health. High doses of UV radiation are considered the major contributing factor for the development of skin cancer or cataracts. UV radiation can weaken the human immune system and can affect crop yields and phytoplankton activity (to only name a few effects).

Some questions of interest might be: What factors influence the amount of UV radiation available? What is the vertical structure of the radiative field? What sort of feedbacks (e.g., increased/decreased photolysis rates) can be expected from perturbations that - directly or indirectly - affect UV radiation? What are some of the health-related effects that can be expected from changes in atmospheric composition?

Climatology of Erythemal Ultraviolet Radiation, 1979-2000

The monthly climatological distribution for the period 1979-2000 of daily total erythemal (skin-reddening) ultraviolet radiation at Earth's surface, calculated with the TUV model using satellite-based (Nimbus-7, Meteor-3 and Earth Probe) TOMS (Total Ozone Mapping Spectrometer) observations of atmospheric ozone. The effects of clouds and scattering aerosols are accounted for using TOMS reflectivity at 380 nm. Download erythemal data.

Downloads and Tools

- TUV source code
- UV Climatologies (NCAR Technical Note, figures, data)
- Quick TUV calculator

<u>http://cprm.acd.ucar.edu/Models/TUV/</u> Photolysis Rates

QUICK TUV CALCULATOR

ACD > Models > TUV > Interactive TUV

This web page runs the 4.1 version of the TUV model. You can run the model for a specified latitude, longitude and time (input option 1), or for a given solar zenith angle (input option 2). In either case, you must also specify the additional parameters in the second column. Also, you may select to print out the photolysis rates and/or the solar actinic flux spectrum at a given altitude above the surface (output option 1), or the erythemal UV and/or solar irradiance at that altitude (output option 2). For any problem, or to send comments, email <u>TUV administrators</u>.

●INPUT OPTION 1	OTHER INPUT PARAMETERS	OUTPUT OPTION 1
LATITUDE (deg): 0	DATE (YYMMDD): 000630	(for Atmospheric Science)
LONGITUDE (deg): 0	OVERHEAD OZONE COLUMN 300	MOLECULAR PHOTOLYSIS
TIME (hh:mm:ss, GMT): 12:00:00	(du):	FREQUENCIES (s-1)
INPUT OPTION 2	SURFACE ALBEDO (0-1): 0.1	ACTINIC FLUX, SPECTRAL (quanta s-1
SOLAR ZENITH ANGLE	GROUND ELEVATION (km asl): 0	cm-2 nm-1)
(deg):	MEASUREM. ALTITUDE (km o	OUTPUT OPTION 2
	asl):	(for Biology)
		IRRADIANCE, WEIGHTED (W m-2)
		IRRADIANCE, SPECTRAL (W m-2 nm-1)

RADIATION TRANSFER MODEL

• Pseudo-spherical 2 streams (faster, less accurate)

O Pseudo-spherical discrete ordinate 4 streams (slower, more accurate) GO!

Photochemistry Summary

$$J(s^{-1}) = \int \sigma(\lambda) \phi(\lambda) F(\lambda) d\lambda$$

 $\sigma(\lambda)$ = absorption cross section, cm² molec⁻¹

 $\phi(\lambda)$ = photodissociation quantum yield, molec quanta⁻¹

 $F(\lambda)$ = spectral actinic flux, quanta cm⁻² s⁻¹ nm⁻¹

- Clouds affect radiation scattering
- Aerosols affect radiation either scatter or absorb

During Break

Go to the following web site http://cprm.acd.ucar.edu/Models/TUV/

- 1) If you are able to compile and run fortran code, download the TUV code
- 2) Go to the TUV Quick Calculator web page

2)

Climatology of Erythemal Ultraviolet Radiation, 1979-2000

The monthly climatological distribution for the period 1979-2000 of daily total erythemal (skin-reddening) ultraviolet radiation at Earth's surface, calculated with the TUV model using satellite-based (Nimbus-7, Meteor-3 and Earth Probe) TOMS (Total Ozone Mapping Spectrometer) observations of atmospheric ozone. The effects of clouds and scattering aerosols are accounted for using TOMS reflectivity at 380 nm. Download erythemal data.

Downloads and Tools

- TUV source code
- UV Climatologies (NCAR Technical Note, figures, data)
- Quick TUV calculator

1) Will need to create username and password; should get a zip file.

http://cprm.acd.ucar.edu/Models/TUV/ Photolysis Rates

Tropospheric Ultraviolet and Visible (TUV) Radiation Model

Tropospheric ultraviolet (UV) radiation is the driving force for all tropospheric photochemical processes. Photons in the UV wavelength have the potential to break usually fairly stable molecules into very reactive fragments (photolysis) and thus initiate reaction chains otherwise unlikely or even impossible. UV radiation is also harmful to living organisms and detrimental to human health. High doses of UV radiation are considered the major contributing factor for the development of skin cancer or cataracts. UV radiation can weaken the human immune system and can affect crop yields and phytoplankton activity (to only name a few effects).

Some questions of interest might be: What factors influence the amount of UV radiation available? What is the vertical structure of the radiative field? What sort of feedbacks (e.g., increased/decreased photolysis rates) can be expected from perturbations that - directly or indirectly - affect UV radiation? What are some of the health-related effects that can be expected from changes in atmospheric composition?

Climatology of Erythemal Ultraviolet Radiation, 1979-2000

The monthly climatological distribution for the period 1979-2000 of daily total erythemal (skin-reddening) ultraviolet radiation at Earth's surface, calculated with the TUV model using satellite-based (Nimbus-7, Meteor-3 and Earth Probe) TOMS (Total Ozone Mapping Spectrometer) observations of atmospheric ozone. The effects of clouds and scattering aerosols are accounted for using TOMS reflectivity at 380 nm. Download erythemal data.

Downloads and Tools

- TUV source code
- UV Climatologies (NCAR Technical Note, figures, data)
- Quick TUV calculator

Quick TUV Calculator to get Photolysis Rates

QUICK TUV CALCULATOR

ACD > Models > TUV > Interactive TUV

This web page runs the 4.1 version of the TUV model. You can run the model for a specified latitude, longitude and time (input option 1), or for a given solar zenith angle (input option 2). In either case, you must also specify the additional parameters in the second column. Also, you may select to print out the photolysis rates and/or the solar actinic flux spectrum at a given altitude above the surface (output option 1), or the erythemal UV and/or solar irradiance at that altitude (output option 2). For any problem, or to send comments, email TUV administrators.

●INPUT OPTION 1	OTHER INPUT PARAMETERS	• OUTPUT OPTION 1
LATITUDE (deg): 0	DATE (YYMMDD): 000630	(for Atmospheric Science)
LONGITUDE (deg): 0	OVERHEAD OZONE COLUMN 300	MOLECULAR PHOTOLYSIS
TIME (hh:mm:ss, GMT): 12:00:00	(du):	FREQUENCIES (s-1)
INPUT OPTION 2	SURFACE ALBEDO (0-1): 0.1	ACTINIC FLUX, SPECTRAL (quanta s-1
SOLAR ZENITH ANGLE	GROUND ELEVATION (km asl): 0	cm-2 nm-1)
(deg):	MEASUREM. ALTITUDE (km 0	OUTPUT OPTION 2
	asl):	(for Biology)
		IRRADIANCE, WEIGHTED (W m-2)
		□ IRRADIANCE, SPECTRAL (W m-2 nm-1)

RADIATION TRANSFER MODEL

Pseudo-spherical 2 streams (faster, less accurate)

O Pseudo-spherical discrete ordinate 4 streams (slower, more accurate) GO!

-- code is compiled and ready to run --

bodhi:~/Documents/tuv/v5.0>tuv

Copyright (C) 1994-2010 University Corporation for Atmospheric Research

Type ?? for general information or <enter> to continue ??

-- code is compiled and ready to run --

??

The TUV model calculates solar short-wave radiation in the Earth's atmosphere. Available output includes:

- Spectral irradiance, W m-2 nm-1
- Spectral actinic flux, quanta cm-2 s-1 nm-1
- Spectrally integrated irradiance, unweighted or weighted by biological action spectra, W m-2
- Photolysis rate coefficients, s-1

Type ?xxx (where xxx = variable name) for help on inputs, e.g. type ?tmzone to get help on entering time zone. Inputs and outputs can be saved in different files. A log file (tuvlog) is also created.

Only some simple changes are possible in the interactive version. Additional changes (e.g. shapes of vertical profiles of ozone, clouds, aerosols; wavelength dependent albedo, etc.) can be made by obtaining and editing the Fortran source code. The full TUV model is available at:

http://www.acd.ucar.edu/TUV

......

PAUSE

To resume execution, type go. Other input will terminate the job.

-- code is compiled and ready to run --


```
select input file
  <enter>: usrinp (if created before)
  1: defin1 (default No. 1, optimized for surface UV)
  2: defin2 (default No. 2, optimized for photochem )
  3: defin3 (default No. 3, optimized for master mech)
  4: defin4 (default No. 4, sample of all outputs)
  file-name for others
```

defin1 \rightarrow good for biology erythemal information

- defin2 \rightarrow gives photolysis rates of a few reactions
- defin3 \rightarrow gives all photolysis rates with outputs every 15 minutes for 24 hours
 - \rightarrow good for using as input into box model simulations

-- code is compiled and ready to run --


```
select input file
  <enter>: usrinp (if created before)
  1: defin1 (default No. 1, optimized for surface UV)
  2: defin2 (default No. 2, optimized for photochem )
  3: defin3 (default No. 3, optimized for master mech)
  4: defin4 (default No. 4, sample of all outputs)
  file-name for others
```

defin1 → good for biology erythemal information
 defin2 → gives photolysis rates of a few reactions
 defin3 → gives all photolysis rates with outputs every 15 minutes for 24 hours
 → good for using as input into box model simulations

Type 2

	TUV inputs:		Name of	output file	Number o for radia	f "streams" ntion calc.
Name of input file	inpfil =	defin2	outfil =	usrout	nstr =	4
	lat =	0.000	lon =	0.000	tmzone =	0.0
	iyear =	2002	imonth =	3	iday =	21
	zstart =	0.000	zstop =	120.000	nz =	121
	wstart =	120.000	wstop =	735.000	nwint =	-156
	tstart =	12.000	tstop =	20.000	nt =	5
	lzenit =	F	alsurf =	0.100	psurf =	-999.0
	o3col =	300.000	so2col =	0.000	no2col =	0.000
	taucld =	0.000	zbase =	4.000	ztop =	5.000
	tauaer =	0.235	ssaaer =	0.990	alpha =	1.000
	dirsun =	1.000	difdn =	1.000	difup =	1.000
	zout =	0.500	zaird =	-9.990E+02	ztemp =	-999.000
	lirrad =	F	laflux =	т	lmmech =	F
	lrates =	F	isfix =	0	nms =	0
	ljvals =	т	ijfix =	0	nmj =	7
	iwfix =	0	itfix =	0	izfix =	0

Type ?variable for help on a variable, or <enter> = keep these settings, or Type variable name to change (lower case):

TUV inputs:

			_			 ·	
	inpfil =	defin2	Lon	gitude	Time	e Zone	
Latitude	lat =	0.000	lon =	0.000	tmzone =	0.0	
	iyear =	2002	imonth =	3	iday =	21	
	zstart =	0.000	zstop =	120.000	nz =	121	
	wstart =	120.000	wstop =	735.000	nwint =	-156	
	tstart =	12.000	tstop =	20.000	nt =	5	
	lzenit =	F	alsurf =	0.100	psurf =	-999.0	
	o3col =	300.000	so2col =	0.000	no2col =	0.000	
	taucld =	0.000	zbase =	4.000	ztop =	5.000	
	tauaer =	0.235	ssaaer =	0.990	alpha =	1.000	
	dirsun =	1.000	difdn =	1.000	difup =	1.000	
	zout =	0.500	zaird =	-9.990E+02	ztemp =	-999.000	
	lirrad =	F	laflux =	т	1mmech =	F	
	lrates =	F	isfix =	0	nms =	0	
	ljvals =	т	ijfix =	0	nmj =	7	
	iwfix =	0	itfix =	0	izfix =	0	

Type ?variable for help on a variable, or <enter> = keep these settings, or Type variable name to change (lower case):

TUV inputs:

	inpfil =	defin2	Μ	onth	[Dav
	lat =	0.000			C1112 C1 11	/ 0.0
<	iyear =	2002	imonth =	3	iday =	21
	zstart =	0.000	zstop =	120.000	nz =	121
	wstart =	120.000	wstop =	735.000	nwint =	-156
	tstart =	12.000	tstop =	20.000	nt =	5
	lzenit =	F	alsurf =	0.100	psurf =	-999.0
	o3col =	300.000	so2col =	0.000	no2col =	0.000
	taucld =	0.000	zbase =	4.000	ztop =	5.000
	tauaer =	0.235	ssaaer =	0.990	alpha =	1.000
	dirsun =	1.000	difdn =	1.000	difup =	1.000
	zout =	0.500	zaird =	-9.990E+02	ztemp =	-999.000
	lirrad =	F	laflux =	т	lmmech =	F
	lrates =	F	isfix =	0	nms =	0
	ljvals =	т	ijfix =	0	nmj =	7
	iwfix =	0	itfix =	0	izfix =	0

Type ?variable for help on a variable, or <enter> = keep these settings, or Type variable name to change (lower case):

Year

TUV inputs:

	inpfil = lat = iyear =	defin2 0.000 2002	outfil = Top of a	usrout tmosphere	Number le	of vertical vels
Surface elevation	zstart =	0.000	zstop =	120.000	nz =	121
above sea level	wstart =	120.000	wstop =	735.000	nwint =	-156
	tstart =	12.000	tstop =	20.000	nt =	5
	lzenit =	F	alsurf =	0.100	psurf =	-999.0
	o3col =	300.000	so2col =	0.000	no2col =	0.000
	taucld =	0.000	zbase =	4.000	ztop =	5.000
	tauaer =	0.235	ssaaer =	0.990	alpha =	1.000
	dirsun =	1.000	difdn =	1.000	difup =	1.000
	zout =	0.500	zaird =	-9.990E+02	ztemp =	-999.000
	lirrad =	F	laflux =	т	1mmech =	F
	lrates =	F	isfix =	0	nms =	0
	ljvals =	т	ijfix =	0	nmj =	7
	iwfix =	0	itfix =	0	izfix =	0

Type ?variable for help on a variable, or <enter> = keep these settings, or Type variable name to change (lower case):

TUV inputs:

	inpfil =	defin2	outfil =	usrout	nstr =	4
	lat =	0.000	lon =	0.000	Number of	wavelength
	iyear =	2002	Last wa	avelength	inte	rvals
Starting	wstart =	120.000	wstop =	735.000	nwint =	-156
wavelength	tstart =	12.000	tstop =	20.000	If mutint	-
	lzenit =	F	alsurf =	0.100	IT NWINT	. < 0, the
	o3col =	300.000	so2col =	0.000	standard a	itmosphere
	taucld =	0.000	zbase =	4.000	wavelength	n grid is used
	tauaer =	0.235	ssaaer =	0.990	alpha =	1.000
	dirsun =	1.000	difdn =	1.000	difup =	1.000
	zout =	0.500	zaird =	-9.990E+02	ztemp =	-999.000
	lirrad =	F	laflux =	т	lmmech =	F
	lrates =	F	isfix =	0	nms =	0
	ljvals =	т	ijfix =	0	nmj =	7
	iwfix =	0	itfix =	0	izfix =	0

Type ?variable for help on a variable, or <enter> = keep these settings, or Type variable name to change (lower case):

TUV inputs:

	inpfil =	defin2	outfil =	usrout	nstr =	4
	lat =	0.000	lon =	0.000	tmzone =	0.0
	iyear =	2002	imonth =	3	iday =	21
	zstart = wstart =	0.000 120.000	Stopp	ing time	Number	of time steps
Starting time, local	tstart =	12.000	tstop =	20.000	nt =	5
hours	lzenit =	F	alsurf =	0.100	psurf =	-999.0
	o3col =	300.000	so2col =	0.000	no2col =	0.000
	taucld =	0.000	zbase =	4.000	ztop =	5.000
	tauaer =	0.235	ssaaer =	0.990	alpha =	1.000
	dirsun =	1.000	difdn =	1.000	difup =	1.000
	zout =	0.500	zaird =	-9.990E+02	ztemp =	-999.000
	lirrad =	F	laflux =	т	lmmech =	F
	lrates =	F	isfix =	0	nms =	0
	ljvals =	т	ijfix =	0	nmj =	7
	iwfix =	0	itfix =	0	izfix =	0

Type ?variable for help on a variable, or <enter> = keep these settings, or Type variable name to change (lower case):

TUV inputs:

	inpfil =	defin2	outfil =	usrout	nstr =	4
	lat =	0.000	lon =	0.000	tmzone =	0.0
	iyear =	2002	imonth =	3	iday =	21
	zstart =	0.000	zstop =	120.000	nz =	121
	wstart = tstart =	120.000 12.000	Surfac	e albedo	Surface	pressure
False = use time	lzenit =	F	alsurf =	0.100	psurf =	-999.0
True = use solar	o3col =	300.000	so2col =	0.000	no2col -	0 000
zenith angle	taucld =	0.000	zbase =	4.000	If psurf <	0, then use
0	tauaer =	0.235	ssaaer =	0.990	US St	andard
	dirsun =	1.000	difdn =	1.000	Atmosph	ere (1976)
	zout =	0.500	zaird =	-9.990E+02	ztemp =	-999.000
	lirrad =	F	laflux =	т	lmmech =	F
	lrates =	F	isfix =	0	nms =	0
	ljvals =	Т	ijfix =	0	nmj =	7
	iwfix =	0	itfix =	0	izfix =	0

Type ?variable for help on a variable, or <enter> = keep these settings, or Type variable name to change (lower case):

TUV inputs:

	inpfil =	defin2	outfil =	usrout	nstr =	4
	lat =	0.000	lon =	0.000	tmzone =	0.0
	iyear =	2002	imonth =	3	iday =	21
	zstart =	0.000	zstop =	120.000	nz =	121
	wstart =	120.000	wstop =	735.000	nwint =	-156
	tstart =	12.000	SO col		NO col	umn (DLI)
	lzenit =	F	30 ₂ coi		$NO_2 CO$	
Ozone column	o3col =	300.000	so2col =	0.000	no2col =	0.000
(DU)	taucld =	0.000	zbase =	4.000	ztop =	5.000
	tauaer =	0.235	ssaaer =	0.990	alpha =	1.000
	dirsun =	1.000	difdn =	1.000	difup =	1.000
	zout =	0.500	zaird =	-9.990E+02	ztemp =	-999.000
	lirrad =	F	laflux =	т	lmmech =	F
	lrates =	F	isfix =	0	nms =	0
	ljvals =	т	ijfix =	0	nmj =	7
	iwfix =	0	itfix =	0	izfix =	0

Type ?variable for help on a variable, or <enter> = keep these settings, or Type variable name to change (lower case):

TUV inputs:

	inpfil =	defin2	outfil =	usrout	nstr =	4
	lat =	0.000	lon =	0.000	tmzone =	0.0
	iyear =	2002	imonth =	3	iday =	21
	zstart =	0.000	zstop =	120.000	nz =	121
	wstart =	120.000	wstop =	735.000	nwint =	-156
	tstart =	12.000	tstop =	20.000	nt =	5
	lzenit =	F		asa haight	Cloud tor	hoight (km)
	o3col =	300.000		ase neight		
Cloud Optical	<pre>taucld =</pre>	0.000	zbase =	4.000	ztop =	5.000
Depth	tauaer =	0.235	ssaaer =	0.990	alpha =	1.000
	dirsun =	1.000	difdn =	1.000	difup =	1.000
	zout =	0.500	zaird =	-9.990E+02	ztemp =	-999.000
	lirrad =	F	laflux =	т	lmmech =	F
	lrates =	F	isfix =	0	nms =	0
	ljvals =	т	ijfix =	0	nmj =	7
	iwfix =	0	itfix =	0	izfix =	0

Type ?variable for help on a variable, or <enter> = keep these settings, or Type variable name to change (lower case):

TUV inputs:

	inpfil =	defin2	outfil =	usrout	nstr =	4
	lat =	0.000	lon =	0.000	tmzone =	0.0
	iyear =	2002	imonth =	3	iday =	21
	zstart =	0.000	zstop =	120.000	nz =	121
	wstart =	120.000	wstop =	735.000	nwint =	-156
	tstart =	12.000	tstop =	20.000	nt =	5
	lzenit =	F	Cingle	cottoning	psurf =	-999.0
	o3col =	300.000	Singles		Angstr	om Coef
	taucld =	0.000	Albedo	of Aerosol	Angsti	UIII CUEI.
Aerosol Optical	tauaer =	0.235	ssaaer =	0.990	alpha =	1.000
Depth	dirsun =	1.000	difdn =	1.000	difup =	1.000
	zout =	0.500	zaird =	-9.990E+02	ztemp =	-999.000
	lirrad =	F	laflux =	т	lmmech =	F
	lrates =	F	isfix =	0	nms =	0
	ljvals =	т	ijfix =	0	nmj =	7
	iwfix =	0	itfix =	0	izfix =	0

Type ?variable for help on a variable, or <enter> = keep these settings, or Type variable name to change (lower case):

TUV inputs:

	inpfil =	defin2	outfil =	usrout	nstr =	4			
	lat =	0.000	lon =	0.000	tmzone =	0.0			
	iyear =	2002	imonth =	3	iday =	21			
	zstart =	0.000	zstop =	120.000	nz =	121			
	wstart =	120.000	wstop =	735.000	nwint =	-156			
	tstart =	12.000	tstop =	20.000	nt =	5			
	lzenit =	F	alsurf =	0.100	psurf =	-999.0			
	o3col =	300.000		0 000	no2col =	0.000			
	taucld =	0.000	DITTUS	e Down					
	tauaer =	0.235	Radi	ation	Diffuse Op	o Radiation			
Direct Sun	dirsun =	1.000	difdn =	1.000	difup =	1.000			
Radiation	zout =	0.500	zaird =	-9.990E+02	ztemp =	-999.000			
	dirsun = dif dirsun = dif dirsun = dif These num	dn = 1.0, dif dn = difup = dn = 1.0, dif bers are diff	fup = 0 fo 1.0 fo up = -1 fo formula fo fo fo fo	r total down r actinic flux r net irradiar h of the defi	n-welling irrad from all direct nce n# files	- tions			
	Type varia	Type variable name to change (lower case):							

TUV inputs:

	inpfil =	defin2	outfil =	usrout	nstr =	4
	lat =	0.000	lon =	0.000	tmzone =	0.0
	iyear =	2002	imonth =	3	iday =	21
	zstart =	0.000	zstop =	120.000	nz =	121
	wstart =	120.000	wstop =	735.000	nwint =	-156
	tstart =	12.000	tstop =	20.000	nt =	5
	lzenit =	F	alsurf =	0.100	psurf =	-999.0
	o3col =	300.000	Air densi	ty (molec	no2col =	0.000
	taucld =	0.000	$-cm^{-3}$	foutput	Tompora	turo (K) of
	tauaer =	0.235		output	rempera	
	dirsun =	1.000	altit	ude	output	altitude
Altitude (km) for	zout =	0.500	zaird =	-9.990E+02	ztemp =	-999.000
desired output	lirrad =	F	laflux =	Т	lmmech =	F
	lrates =	F	· ·			ر میر مامیندا
	ljvals =	т	IT zaird	or ztemp < 0	, then US Sta	andard
	iwfix =	0	A	tmosphere a	t zout is use	d ,
	Type ?vari	able for he	lp on a var	iable, or		

<enter> = keep these settings, or

Type variable name to change (lower case):

TUV inputs:

	inpfil =	defin2	outfil =	usrout	nstr =	4
	lat =	0.000	lon =	0.000	tmzone =	0.0
	iyear =	2002	imonth =	3	iday =	21
	zstart =	0.000	zstop =	120.000	nz =	121
	wstart =	120.000	wstop =	735.000	nwint =	-156
	tstart =	12.000	tstop =	20.000	nt =	5
	lzenit =	F	alsurf =	0.100	psurf =	-999.0
	o3col =	300.000	so2col =	0.000	no2col =	0.000
	taucld =	0.000	zbase =	4.000	ztop =	5.000
	tauaer =	0.235	Output ir	ncludes	Output inc	ludes data
	dirsun =	1.000	actinic	: flux	for hox	model
	zout =	0.500				mouer
True or False for	lirrad =	F	laflux =	D	lmmech =	F
whether spectral	lrates =	F	isfix =	0	nms =	0
irradiance is	ljvals =	т	ijfix =	0	nmj =	7
included in output	iwfix =	0	itfix =	0	izfix =	0

Type ?variable for help on a variable, or <enter> = keep these settings, or Type variable name to change (lower case):

TUV inputs:

	inpfil =	defin2	outfil =	usrout	nstr =	4		
	lat =	0.000	lon =	0.000	tmzone =	0.0		
	iyear =	2002	imonth =	3	iday =	21		
	zstart =	0.000	zstop =	120.000	nz =	121		
	wstart =	120.000	wstop =	735.000	nwint =	-156		
	tstart =	12.000	tstop =	20.000	nt =	5		
	lzenit =	F	alsurf =	0.100	psurf =	-999.0		
	o3col =	300.000	so2col =	0.000	no2col =	0.000		
	taucld =	0.000	Output ir	ncludes	ztop =	5.000		
	tauaer =	0.235	tabulated d	ose rates	alpha =	1.000		
	dirsun =	1.000	for difforo	nt timos	Numbere	f doco ratos		
	zout =	0.500		tudoo				
	lirrad =	F	and alti	tudes	to be r	eported		
True or False for (lrates =	FX	isfix =	0	nms =	0		
whether dose	ljvals =		ijfix =	0	nmj =	7		
rates are included	iwfix =	0	itfix =	0	izfix =	0		
in output								
	Type ?variable for help on a variable, or							
	< enter > = k	eep these	settings, or					
	Type variable name to change (lower case):							

TUV inputs:

	inpfil =	defin2	outfil =	usrout	nstr =	4
	lat =	0.000	lon =	0.000	tmzone =	0.0
	iyear =	2002	imonth =	3	iday =	21
	zstart =	0.000	zstop =	120.000	nz =	121
	wstart =	120.000	wstop =	735.000	nwint =	-156
	tstart =	12.000	tstop =	20.000	nt =	5
	lzenit =	F	alsurf =	0.100	psurf =	-999.0
	o3col =	300.000	so2col =	0.000	no2col =	0.000
	taucld =	0.000	zbase =	4.000	ztop =	5.000
	tauaer =	0.235	Output pl	hotolysis	alpha =	1.000
	dirsun =	1.000	rates for	reaction	difup =	1.000
	zout =	0.500	iifix at di	ifferent	Number	fphotolycic
	lirrad =	F	times and	altitudae		
	lrates =	F	times and	altitudes	rates to b	ereported
True or False for	ljvals =		ijfix =	0	nmj =	7
whether	iwfix =	0	itfix =	0	izfix =	0
photolysis rates are included in output	Type ?vari <enter> = Type varia</enter>	able for he keep these ble name to	lp on a vari settings, or change (low	able, or ver case):		

TUV inputs:

different times

and altitudes

	inpfil =	defin2	outfil =	usrout	nstr =	4
	lat =	0.000	lon =	0.000	tmzone =	0.0
	iyear =	2002	imonth =	3	iday =	21
	zstart =	0.000	zstop =	120.000	nz =	121
	wstart =	120.000	wstop =	735.000	nwint =	-156
	tstart =	12.000	tstop =	20.000	nt =	5
	lzenit =	F	alsurf =	0.100	psurf =	-999.0
	o3col =	300.000	co2co1 -	0 000	no2col =	0.000
	taucld =	0.000	Output s	spectral	zton =	5 000
	tauaer =	0.235	irradia	nce or	Output	spectral
	dirsun =	1.000	spectral a	ctinic flux	irradiance	or spectral
Output spectral	zout =	0.500	at time =	itfix for	actinic flux a	at altitude =
irradiance or	lirrad =	F	different	altitudes	izfix for diff	erent times
spectral actinic	lrates =	F	and wave	alongths	and way	olongths
flux at wavelength	ljvals =	Т			anu wav	cicliguis
- iwfix for	iwfix =	0	itfix =	0	izfix =	0
ditterent times						

Type ?variable for help on a variable, or <enter> = keep these settings, or Type variable name to change (lower case):

Make one change to input:

Type: outfil Type: screen

This will give output on screen instead of in an output file.

```
Type ?variable for help on a variable, or
<enter> = keep these settings, or
Type variable name to change (lower case):
outfil
write new value for outfil
screen
```

Then push "return" (or "enter") And "enter" again (that is, do not save input file The program calculates and prints output.

TUV Output

done: load	ing inputs						
calculating Five time steps and solar zenith angles							
equally sp	aced z-grid						
step = 1	sza =	1.829 Earth	-sun factor	= 1.00767	92		
step = 2	sza = 2	8.200 Earth	-sun factor	= 1.00763	26		
step = 3	sza = 5	8.205 Earth	-sun factor	= 1.00758	37		
step = 4	sza = 8	8.211 Earth	-sun factor	= 1.00753	71		
step = 5	sza = 11	8.216 Earth	-sun factor	= 1.00749	04		
Spectral ac	tinic flux,	quanta cm-	2 : 1 1				
values at z	= 0.5	00 km	Acti	nic Flux at z=0	.5 km, different		
Columns: way	velength (n	m), times (hr	wavelengths a	and 5 times		
wc, nm	12.000	14.000	16.000	18.000	20.000 🧹		
sza =	1.829	28.200	58.205	88.211	118.216		
120.7000	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00		
121.6500	0.000E:00	0.000E+00	0.000E+00	0.000E+00	0.000E+00		
122.1000	8.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00		
122.7000	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00		
123.4500	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00		
124.2000	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00		
125.0000	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00		

TUV Output

Photolysis rate coefficients, s-1 $1 = 03 \rightarrow 02 + 0(1D)$ $2 = H202 \rightarrow 2 0H$ $3 = N02 \rightarrow N0 + 0(3P)$ $4 = N03 \rightarrow N0 + 02$ Photolysis rates of 7 reactions								
at 5 time steps and solar zenith								
5 = 1005 - 60000	-> NU2 + U(5P)		angl	<u> </u>			
6 = CH20	-> H + HCO			ung	0			
7 = CH20	-> H2 + C0							
values at z	= 0.5	00 km						
Columns: tim	ne, sza, ph	oto-reactio	ns		λ			
time, hrs.	sza, deg.	f 🖌	2	3	4	5	6	7
12.0000	1.829	5.292E-0 <mark>5</mark>	9.341E-06	1.196E-02	2.523E-02	2.009E-01	4.120E-05	5.888E-05
14.0000	28.200	4.013E-05	8.186E-06	1.121E-02	2.463E-02	1.956E-01	3.565E-05	5.314E-05
16.0000	58.205	1.112E-05	4.203E-06	7.629E-03	2.070E-02	1.618E-01	1.701E-05	3.040E-05
18.0000	88.211	8.195E-08	1.039E-07	3.240E-04	9.924E-04	7.680E-03	2.834E-07	9.110E-07
20.0000	118.216	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00

Exercises

Modify input section:

- Change latitude and longitude to location of the dust storm Lat = 28N Lon = 73 E
- 2) Change date to time of dust storm 2010-04-21
- Change start and stop time to go from morning to late afternoon tstart=0, tstop=14 You could also change the number of times to print out
- 4) Change the aerosol optical depth (tauaer) to the value for the dust storm tauaer = 1.5
- 5) Change the Angstrom component (alpha) to the value for the dust storm alpha = 1.0
- 6) Change the altitude to compare results from near the surface to near the top of the troposphere
 70.12 km

zout = 12 km

How much do the mid-day photolysis rates change from one step to the next?

WRF-Chem Sensitivity Simulations

- Base Case with Dust emissions and j-values affected = Dust_J
- 2. No Dust emissions Case = No Dust
- Dust emissions with J-values and Heterogeneous reactions (no relative humidity effect) = Dust_JH_NoRH
- 4. Dust emissions with J-values and Heterogeneous reactions (with relative humidity effect) = Dust_JH
Add 12 Heterogeneous Reactions in WRF-Chem

Reaction	γ_{dry}	RH dependence
$O_3 + Dust \rightarrow P$	2.7 x 10 ⁻⁵	Cwiertny et al. (2008)
$HNO_3 + Dust \rightarrow 0.5 NO_x + P$	2.0 x 10 ⁻³	Liu et al. (2008)
$NO_2 + Dust \rightarrow P$	2.1 x 10 ⁻⁶	-
$NO_3 + Dust \rightarrow P$	0.1	-
$N_2O_5 + Dust \rightarrow P$	0.03	-
$OH + Dust \rightarrow 0.05 H_2O_2 + P$	0.18	Bedjanian et al. (2013a)
$HO_2 + Dust \rightarrow 0.1 H_2O_2 + P$	6.42 x 10 ⁻²	Bedjanian et al. (2013b)
$H_2O_2 + Dust \rightarrow P$	2 x 10 ⁻³	Pradhan et al. (2010)
$SO_2 + Dust \rightarrow P$	3.0 x 10 ⁻⁵	Preszler Prince et al. (2007)
$CH_3COOH + Dust \rightarrow P$	1 x 10 ⁻³	-
$CH_3OH + Dust \rightarrow P$	1 x 10 ⁻⁵	-
$CH_2O + Dust \rightarrow P$	1 x 10 ⁻⁵	_

Heterogeneous Chemistry in WRF-Chem example of O_3 + dust reaction rate constant

Dust mixing ratio 17-22 April 2010

Reaction rate constant for O_3 + dust

$$k_{g} = \sum_{i=1}^{5} \frac{4\pi r_{i} D_{g} V N_{i}}{1 + K_{n} [\chi + \frac{4(1-\gamma)}{3\gamma}]}$$

[Heikes and Thompson, 1983]

WRF-Chem trace gases compared to observations at Nainital -- represents regional-scale concentrations

WRF-Chem reproduces observed variations in ozone and NOy at Nainital with effects of dust aerosols.

